On the Uniform Projection Problem in Descriptive Set Theory

For every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math>...

Full description

Saved in:
Bibliographic Details
Main Authors: Vladimir Kanovei, Vassily Lyubetsky
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/13
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589136001761280
author Vladimir Kanovei
Vassily Lyubetsky
author_facet Vladimir Kanovei
Vassily Lyubetsky
author_sort Vladimir Kanovei
collection DOAJ
description For every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, generic models of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">ZFC</mi></semantics></math></inline-formula> will be presented for either of the following two sentences: 1. There exists a linear <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>Σ</mi><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>2</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set not equal to the projection of any uniform planar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mi mathvariant="bold">Π</mi></mrow><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>2</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set. 2. There exists a linear <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>Δ</mi><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>2</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set not equal to the projection of any uniform planar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mi mathvariant="bold">Π</mi></mrow><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>1</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set. Ensuing consistency and independence corollaries are discussed.
format Article
id doaj-art-a31993e98b4c4eeba5621b9f0998442a
institution Kabale University
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-a31993e98b4c4eeba5621b9f0998442a2025-01-24T13:22:08ZengMDPI AGAxioms2075-16802024-12-011411310.3390/axioms14010013On the Uniform Projection Problem in Descriptive Set TheoryVladimir Kanovei0Vassily Lyubetsky1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127051, RussiaInstitute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127051, RussiaFor every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, generic models of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">ZFC</mi></semantics></math></inline-formula> will be presented for either of the following two sentences: 1. There exists a linear <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>Σ</mi><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>2</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set not equal to the projection of any uniform planar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mi mathvariant="bold">Π</mi></mrow><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>2</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set. 2. There exists a linear <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>Δ</mi><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>2</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set not equal to the projection of any uniform planar <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mi mathvariant="bold">Π</mi></mrow><mrow><mi mathvariant="double-struck">n</mi><mo>+</mo><mn>1</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> set. Ensuing consistency and independence corollaries are discussed.https://www.mdpi.com/2075-1680/14/1/13constructibilityprojective hierarchyuniform setsprojections
spellingShingle Vladimir Kanovei
Vassily Lyubetsky
On the Uniform Projection Problem in Descriptive Set Theory
Axioms
constructibility
projective hierarchy
uniform sets
projections
title On the Uniform Projection Problem in Descriptive Set Theory
title_full On the Uniform Projection Problem in Descriptive Set Theory
title_fullStr On the Uniform Projection Problem in Descriptive Set Theory
title_full_unstemmed On the Uniform Projection Problem in Descriptive Set Theory
title_short On the Uniform Projection Problem in Descriptive Set Theory
title_sort on the uniform projection problem in descriptive set theory
topic constructibility
projective hierarchy
uniform sets
projections
url https://www.mdpi.com/2075-1680/14/1/13
work_keys_str_mv AT vladimirkanovei ontheuniformprojectionproblemindescriptivesettheory
AT vassilylyubetsky ontheuniformprojectionproblemindescriptivesettheory