Zero-field J-spectroscopy of quadrupolar nuclei

Abstract Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues...

Full description

Saved in:
Bibliographic Details
Main Authors: Román Picazo-Frutos, Kirill F. Sheberstov, John W. Blanchard, Erik Van Dyke, Moritz Reh, Tobias Sjoelander, Alexander Pines, Dmitry Budker, Danila A. Barskiy
Format: Article
Language:English
Published: Nature Portfolio 2024-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-48390-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849761625171558400
author Román Picazo-Frutos
Kirill F. Sheberstov
John W. Blanchard
Erik Van Dyke
Moritz Reh
Tobias Sjoelander
Alexander Pines
Dmitry Budker
Danila A. Barskiy
author_facet Román Picazo-Frutos
Kirill F. Sheberstov
John W. Blanchard
Erik Van Dyke
Moritz Reh
Tobias Sjoelander
Alexander Pines
Dmitry Budker
Danila A. Barskiy
author_sort Román Picazo-Frutos
collection DOAJ
description Abstract Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements. A primary isotope effect, $$\triangle J=\left({\gamma }_{{}^{14}{{{{{\rm{N}}}}}}}/{\gamma }_{{}^{15}{{{{{\rm{N}}}}}}}\right){J}_{{}^{15}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}-{J}_{{}^{14}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}\approx -58$$ △ J = γ 14 N / γ 15 N J 15 N H − J 14 N H ≈ − 58 mHz, is deduced by analysis of the proton-nitrogen J-coupling ratios. This study points toward further experiments with symmetric cations containing quadrupolar nuclei, promising applications in biomedicine, energy storage, and benchmarking quantum chemistry calculations.
format Article
id doaj-art-a2eb9fecb9974f20931bc0212845edca
institution DOAJ
issn 2041-1723
language English
publishDate 2024-05-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-a2eb9fecb9974f20931bc0212845edca2025-08-20T03:05:57ZengNature PortfolioNature Communications2041-17232024-05-0115111010.1038/s41467-024-48390-2Zero-field J-spectroscopy of quadrupolar nucleiRomán Picazo-Frutos0Kirill F. Sheberstov1John W. Blanchard2Erik Van Dyke3Moritz Reh4Tobias Sjoelander5Alexander Pines6Dmitry Budker7Danila A. Barskiy8Helmholtz-Institut MainzHelmholtz-Institut MainzHelmholtz-Institut MainzHelmholtz-Institut MainzDepartment of Physics, University of California—BerkeleyDepartment of Physics, University of BaselDepartment of Chemistry, University of CaliforniaHelmholtz-Institut MainzHelmholtz-Institut MainzAbstract Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements. A primary isotope effect, $$\triangle J=\left({\gamma }_{{}^{14}{{{{{\rm{N}}}}}}}/{\gamma }_{{}^{15}{{{{{\rm{N}}}}}}}\right){J}_{{}^{15}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}-{J}_{{}^{14}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}\approx -58$$ △ J = γ 14 N / γ 15 N J 15 N H − J 14 N H ≈ − 58 mHz, is deduced by analysis of the proton-nitrogen J-coupling ratios. This study points toward further experiments with symmetric cations containing quadrupolar nuclei, promising applications in biomedicine, energy storage, and benchmarking quantum chemistry calculations.https://doi.org/10.1038/s41467-024-48390-2
spellingShingle Román Picazo-Frutos
Kirill F. Sheberstov
John W. Blanchard
Erik Van Dyke
Moritz Reh
Tobias Sjoelander
Alexander Pines
Dmitry Budker
Danila A. Barskiy
Zero-field J-spectroscopy of quadrupolar nuclei
Nature Communications
title Zero-field J-spectroscopy of quadrupolar nuclei
title_full Zero-field J-spectroscopy of quadrupolar nuclei
title_fullStr Zero-field J-spectroscopy of quadrupolar nuclei
title_full_unstemmed Zero-field J-spectroscopy of quadrupolar nuclei
title_short Zero-field J-spectroscopy of quadrupolar nuclei
title_sort zero field j spectroscopy of quadrupolar nuclei
url https://doi.org/10.1038/s41467-024-48390-2
work_keys_str_mv AT romanpicazofrutos zerofieldjspectroscopyofquadrupolarnuclei
AT kirillfsheberstov zerofieldjspectroscopyofquadrupolarnuclei
AT johnwblanchard zerofieldjspectroscopyofquadrupolarnuclei
AT erikvandyke zerofieldjspectroscopyofquadrupolarnuclei
AT moritzreh zerofieldjspectroscopyofquadrupolarnuclei
AT tobiassjoelander zerofieldjspectroscopyofquadrupolarnuclei
AT alexanderpines zerofieldjspectroscopyofquadrupolarnuclei
AT dmitrybudker zerofieldjspectroscopyofquadrupolarnuclei
AT danilaabarskiy zerofieldjspectroscopyofquadrupolarnuclei