Zero-field J-spectroscopy of quadrupolar nuclei
Abstract Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-05-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-024-48390-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849761625171558400 |
|---|---|
| author | Román Picazo-Frutos Kirill F. Sheberstov John W. Blanchard Erik Van Dyke Moritz Reh Tobias Sjoelander Alexander Pines Dmitry Budker Danila A. Barskiy |
| author_facet | Román Picazo-Frutos Kirill F. Sheberstov John W. Blanchard Erik Van Dyke Moritz Reh Tobias Sjoelander Alexander Pines Dmitry Budker Danila A. Barskiy |
| author_sort | Román Picazo-Frutos |
| collection | DOAJ |
| description | Abstract Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements. A primary isotope effect, $$\triangle J=\left({\gamma }_{{}^{14}{{{{{\rm{N}}}}}}}/{\gamma }_{{}^{15}{{{{{\rm{N}}}}}}}\right){J}_{{}^{15}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}-{J}_{{}^{14}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}\approx -58$$ △ J = γ 14 N / γ 15 N J 15 N H − J 14 N H ≈ − 58 mHz, is deduced by analysis of the proton-nitrogen J-coupling ratios. This study points toward further experiments with symmetric cations containing quadrupolar nuclei, promising applications in biomedicine, energy storage, and benchmarking quantum chemistry calculations. |
| format | Article |
| id | doaj-art-a2eb9fecb9974f20931bc0212845edca |
| institution | DOAJ |
| issn | 2041-1723 |
| language | English |
| publishDate | 2024-05-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-a2eb9fecb9974f20931bc0212845edca2025-08-20T03:05:57ZengNature PortfolioNature Communications2041-17232024-05-0115111010.1038/s41467-024-48390-2Zero-field J-spectroscopy of quadrupolar nucleiRomán Picazo-Frutos0Kirill F. Sheberstov1John W. Blanchard2Erik Van Dyke3Moritz Reh4Tobias Sjoelander5Alexander Pines6Dmitry Budker7Danila A. Barskiy8Helmholtz-Institut MainzHelmholtz-Institut MainzHelmholtz-Institut MainzHelmholtz-Institut MainzDepartment of Physics, University of California—BerkeleyDepartment of Physics, University of BaselDepartment of Chemistry, University of CaliforniaHelmholtz-Institut MainzHelmholtz-Institut MainzAbstract Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) allows molecular structure elucidation via measurement of electron-mediated spin-spin J-couplings. This study examines zero-field J-spectra from molecules with quadrupolar nuclei, exemplified by solutions of various isotopologues of ammonium cations. The spectra reveal differences between various isotopologues upon extracting precise J-coupling values from pulse-acquire measurements. A primary isotope effect, $$\triangle J=\left({\gamma }_{{}^{14}{{{{{\rm{N}}}}}}}/{\gamma }_{{}^{15}{{{{{\rm{N}}}}}}}\right){J}_{{}^{15}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}-{J}_{{}^{14}{{{{{\rm{N}}}}}}{{{{{\rm{H}}}}}}}\approx -58$$ △ J = γ 14 N / γ 15 N J 15 N H − J 14 N H ≈ − 58 mHz, is deduced by analysis of the proton-nitrogen J-coupling ratios. This study points toward further experiments with symmetric cations containing quadrupolar nuclei, promising applications in biomedicine, energy storage, and benchmarking quantum chemistry calculations.https://doi.org/10.1038/s41467-024-48390-2 |
| spellingShingle | Román Picazo-Frutos Kirill F. Sheberstov John W. Blanchard Erik Van Dyke Moritz Reh Tobias Sjoelander Alexander Pines Dmitry Budker Danila A. Barskiy Zero-field J-spectroscopy of quadrupolar nuclei Nature Communications |
| title | Zero-field J-spectroscopy of quadrupolar nuclei |
| title_full | Zero-field J-spectroscopy of quadrupolar nuclei |
| title_fullStr | Zero-field J-spectroscopy of quadrupolar nuclei |
| title_full_unstemmed | Zero-field J-spectroscopy of quadrupolar nuclei |
| title_short | Zero-field J-spectroscopy of quadrupolar nuclei |
| title_sort | zero field j spectroscopy of quadrupolar nuclei |
| url | https://doi.org/10.1038/s41467-024-48390-2 |
| work_keys_str_mv | AT romanpicazofrutos zerofieldjspectroscopyofquadrupolarnuclei AT kirillfsheberstov zerofieldjspectroscopyofquadrupolarnuclei AT johnwblanchard zerofieldjspectroscopyofquadrupolarnuclei AT erikvandyke zerofieldjspectroscopyofquadrupolarnuclei AT moritzreh zerofieldjspectroscopyofquadrupolarnuclei AT tobiassjoelander zerofieldjspectroscopyofquadrupolarnuclei AT alexanderpines zerofieldjspectroscopyofquadrupolarnuclei AT dmitrybudker zerofieldjspectroscopyofquadrupolarnuclei AT danilaabarskiy zerofieldjspectroscopyofquadrupolarnuclei |