Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening
Predicting the performance of solar water heater (SWH) is challenging due to the complexity of the system. Fortunately, knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive power of machine learning models, we can further solve a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2017/4194251 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predicting the performance of solar water heater (SWH) is challenging due to the complexity of the system. Fortunately, knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive power of machine learning models, we can further solve a more challenging question: how to cost-effectively design a high-performance SWH? Here, we summarize our recent studies and propose a general framework of SWH design using a machine learning-based high-throughput screening (HTS) method. Design of water-in-glass evacuated tube solar water heater (WGET-SWH) is selected as a case study to show the potential application of machine learning-based HTS to the design and optimization of solar energy systems. |
---|---|
ISSN: | 1110-662X 1687-529X |