Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene

The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% o...

Full description

Saved in:
Bibliographic Details
Main Authors: Titinan Chanchuey, Chaowat Autthanit, Bunjerd Jongsomjit
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2016/9672408
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% of Mo). The final catalysts were characterized using various techniques such as XRD, N2 physisorption, SEM/EDX, TEM, and NH3-TPD. The catalytic activity for all catalysts in gas-phase ethanol dehydration reaction was determined at temperature range of 200°C to 400°C. It was found that the most crucial factor influencing the catalytic activities appears to be the acidity. The acid property of catalysts depended on the amount of Mo loading. Increased Mo loading in Al-SSP resulted in increased weak acid sites, which enhanced the catalytic activity. Besides acidity, the high concentration of Al at surface of catalyst is also essential to obtain high activity. Based on the results, the most suitable catalyst in this study is 1% Mo/Al-SSP catalyst, which can produce ethylene yield of ca. 90% at 300°C with slight amounts of diethyl ether (DEE) and acetaldehyde.
ISSN:2090-9063
2090-9071