On the logarithmic fractional Schrödinger–Poisson system with saddle-like potential

In this paper, we use variational methods to prove the existence of a positive solution for the following class of logarithmic fractional Schrödinger–Poisson system: \begin{equation*} \begin{cases} \epsilon^{2s}\left(-\Delta\right)^{s} u+V(x)u-\phi(x)u= u \log {u^{2}}&\quad\text{ in }\mathbb...

Full description

Saved in:
Bibliographic Details
Main Authors: Huo Tao, Lin Li
Format: Article
Language:English
Published: University of Szeged 2024-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10967
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we use variational methods to prove the existence of a positive solution for the following class of logarithmic fractional Schrödinger–Poisson system: \begin{equation*} \begin{cases} \epsilon^{2s}\left(-\Delta\right)^{s} u+V(x)u-\phi(x)u= u \log {u^{2}}&\quad\text{ in }\mathbb{R}^{3}, \\ \epsilon^{2t}\left(-\Delta\right)^{t}\phi=|u|^{2}&\quad\text{ in }\mathbb{R}^{3}, \end{cases} \end{equation*} where $\epsilon>0$, $s,t\in(0,1)$, $\left(-\Delta\right)^{\alpha}$ is the fractional Laplacian and $V$ is a saddle-like potential.
ISSN:1417-3875