A Comparative Study on Battery Modelling via Specific Hybrid Pulse Power Characterization Testing for Unmanned Aerial Vehicles in Real Flight Conditions
Battery modelling is essential for optimizing the performance and reliability of Unmanned Aerial Vehicles (UAVs), particularly given the challenges posed by their dynamic power demands and limited onboard computational resources. This study evaluates two widely adopted Equivalent Circuit Models (ECM...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | World Electric Vehicle Journal |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2032-6653/16/2/55 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Battery modelling is essential for optimizing the performance and reliability of Unmanned Aerial Vehicles (UAVs), particularly given the challenges posed by their dynamic power demands and limited onboard computational resources. This study evaluates two widely adopted Equivalent Circuit Models (ECMs), the fixed resistance model and the Thevenin model to determine their suitability for UAV applications. Using the Specific Hybrid Pulse Power Characterization (SHPPC) method, key parameters, including Open Circuit Voltage (OCV), internal resistance (Ri), polarization resistance (R1), and polarization capacitance (C1), were estimated across multiple states of charge (SOC). The models were analyzed under nine parameterization scenarios, ranging from fully average parameters to configurations where selected parameters were tied to SOC. Results indicate that the Thevenin model, with selective SOC-dependent parameters, demonstrated superior predictive accuracy, achieving error reductions of up to 4.26 times compared to the fixed resistance model. Additionally, findings reveal that modelling all parameters as SOC-dependent is unnecessary, as simpler configurations can balance accuracy and computational efficiency, particularly for UAVs with constrained BMS capabilities. |
|---|---|
| ISSN: | 2032-6653 |