Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting Fluid
Input parameter like the cutting fluid is one of the requirements for minimal surface roughness, cutting temperature, tool wear and optimal material removal rate coupled with improved machinability and productivity. The evaluation of the optimal factors of surface roughness, material removal rate,...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
College of Engineering of Afe Babalola University, Ado-Ekiti (ABUAD), Ekiti State, Nigeria
2024-04-01
|
| Series: | ABUAD Journal of Engineering Research and Development |
| Subjects: | |
| Online Access: | https://journals.abuad.edu.ng/index.php/ajerd/article/view/358 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850052564670742528 |
|---|---|
| author | Osayamen Gregory Ehibor Mathew Sunday Abolarin Mohammed Baba Ndaliman Aliyu Alhaji Abdullahi |
| author_facet | Osayamen Gregory Ehibor Mathew Sunday Abolarin Mohammed Baba Ndaliman Aliyu Alhaji Abdullahi |
| author_sort | Osayamen Gregory Ehibor |
| collection | DOAJ |
| description |
Input parameter like the cutting fluid is one of the requirements for minimal surface roughness, cutting temperature, tool wear and optimal material removal rate coupled with improved machinability and productivity. The evaluation of the optimal factors of surface roughness, material removal rate, cutting temperature and tool wear in the turning of AISI Mild Steel with the use of eco-friendly fluids. Concerns has been raise globally about the non - biodegradability and non-recyclability of the conventional fluids in the research space. This prompted the research interest in replacing the mineral oil based fluids with eco-friendly cutting fluid such as castor seed oil based cutting fluid (CBCF). The locally sourced castor seed oil was investigated for its physiochemical properties as well as its fatty acid composition (FAC). The cutting fluid was formulated using ratio 1:9 of oil with additives to distilled water and then characterized. In turning of AISI 1020 Mild Steel, the evaluation of surface roughness, material removal rate, cutting temperature and tool wear under the CBCF compared to the mineral oil based cutting fluid (MBCF) were carried out using Taguchi experimental design and Grey Relational Analysis (GRA) for multi-response optimization. The formulated cutting fluid showed pH value of 8.47, viscosity of 0.830 mm2/s, good resistance to corrosion, good stability and milkfish in colour. From the GRA, the multi-response optimal factor combination under the CBCF is (1250 rev/min) spindle speed, (0.6 mm/rev) feed rate and (1.0 mm) depth of cut, all at level 3 while under the MBCF, it also shows (1250 rev/min) spindle speed, (0.6 mm/rev) feed rate and (1.0 mm) depth of cut all at level 3. The parameters from Taguchi and GRA results are in agreement with results from other vegetable oil based fluids and this study also contributes and improves the science of machining.
|
| format | Article |
| id | doaj-art-a2221326deb84676a25f9ea6e77cd12e |
| institution | DOAJ |
| issn | 2756-6811 2645-2685 |
| language | English |
| publishDate | 2024-04-01 |
| publisher | College of Engineering of Afe Babalola University, Ado-Ekiti (ABUAD), Ekiti State, Nigeria |
| record_format | Article |
| series | ABUAD Journal of Engineering Research and Development |
| spelling | doaj-art-a2221326deb84676a25f9ea6e77cd12e2025-08-20T02:52:46ZengCollege of Engineering of Afe Babalola University, Ado-Ekiti (ABUAD), Ekiti State, NigeriaABUAD Journal of Engineering Research and Development2756-68112645-26852024-04-017110.53982/ajerd.2024.0701.13-j303Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting FluidOsayamen Gregory Ehibor0Mathew Sunday Abolarin1Mohammed Baba Ndaliman2Aliyu Alhaji Abdullahi3Department of Mechanical Engineering, Federal University of Technology Minna, Niger StateDepartment of Mechanical Engineering, Federal University of Technology Minna, Niger StateDepartment of Mechanical Engineering, Federal University of Technology Minna, Niger StateDepartment of Mechanical Engineering, Federal University of Technology Minna, Niger State Input parameter like the cutting fluid is one of the requirements for minimal surface roughness, cutting temperature, tool wear and optimal material removal rate coupled with improved machinability and productivity. The evaluation of the optimal factors of surface roughness, material removal rate, cutting temperature and tool wear in the turning of AISI Mild Steel with the use of eco-friendly fluids. Concerns has been raise globally about the non - biodegradability and non-recyclability of the conventional fluids in the research space. This prompted the research interest in replacing the mineral oil based fluids with eco-friendly cutting fluid such as castor seed oil based cutting fluid (CBCF). The locally sourced castor seed oil was investigated for its physiochemical properties as well as its fatty acid composition (FAC). The cutting fluid was formulated using ratio 1:9 of oil with additives to distilled water and then characterized. In turning of AISI 1020 Mild Steel, the evaluation of surface roughness, material removal rate, cutting temperature and tool wear under the CBCF compared to the mineral oil based cutting fluid (MBCF) were carried out using Taguchi experimental design and Grey Relational Analysis (GRA) for multi-response optimization. The formulated cutting fluid showed pH value of 8.47, viscosity of 0.830 mm2/s, good resistance to corrosion, good stability and milkfish in colour. From the GRA, the multi-response optimal factor combination under the CBCF is (1250 rev/min) spindle speed, (0.6 mm/rev) feed rate and (1.0 mm) depth of cut, all at level 3 while under the MBCF, it also shows (1250 rev/min) spindle speed, (0.6 mm/rev) feed rate and (1.0 mm) depth of cut all at level 3. The parameters from Taguchi and GRA results are in agreement with results from other vegetable oil based fluids and this study also contributes and improves the science of machining. https://journals.abuad.edu.ng/index.php/ajerd/article/view/358TurningCastor Seed OilCutting TemperatureMaterial Removal RateSurface RoughnessTool Wear |
| spellingShingle | Osayamen Gregory Ehibor Mathew Sunday Abolarin Mohammed Baba Ndaliman Aliyu Alhaji Abdullahi Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting Fluid ABUAD Journal of Engineering Research and Development Turning Castor Seed Oil Cutting Temperature Material Removal Rate Surface Roughness Tool Wear |
| title | Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting Fluid |
| title_full | Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting Fluid |
| title_fullStr | Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting Fluid |
| title_full_unstemmed | Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting Fluid |
| title_short | Evaluation and Multi-Objective Optimisation of Cutting Parameters in Turning of AISI 1020 Mild Steel using Formulated Cutting Fluid |
| title_sort | evaluation and multi objective optimisation of cutting parameters in turning of aisi 1020 mild steel using formulated cutting fluid |
| topic | Turning Castor Seed Oil Cutting Temperature Material Removal Rate Surface Roughness Tool Wear |
| url | https://journals.abuad.edu.ng/index.php/ajerd/article/view/358 |
| work_keys_str_mv | AT osayamengregoryehibor evaluationandmultiobjectiveoptimisationofcuttingparametersinturningofaisi1020mildsteelusingformulatedcuttingfluid AT mathewsundayabolarin evaluationandmultiobjectiveoptimisationofcuttingparametersinturningofaisi1020mildsteelusingformulatedcuttingfluid AT mohammedbabandaliman evaluationandmultiobjectiveoptimisationofcuttingparametersinturningofaisi1020mildsteelusingformulatedcuttingfluid AT aliyualhajiabdullahi evaluationandmultiobjectiveoptimisationofcuttingparametersinturningofaisi1020mildsteelusingformulatedcuttingfluid |