White-Matter Connectivity and General Movements in Infants with Perinatal Brain Injury

Background/Objectives: Cerebral palsy (CP), often caused by early brain injury such as perinatal stroke or hemorrhage, is the most common lifelong motor disability. Early identification of at-risk infants and timely access to rehabilitation interventions are essential for improving long-term outcome...

Full description

Saved in:
Bibliographic Details
Main Authors: Ellen N. Sutter, Jose Guerrero-Gonzalez, Cameron P. Casey, Douglas C. Dean, Andrea de Abreu e Gouvea, Colleen Peyton, Ryan M. McAdams, Bernadette T. Gillick
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/15/4/341
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background/Objectives: Cerebral palsy (CP), often caused by early brain injury such as perinatal stroke or hemorrhage, is the most common lifelong motor disability. Early identification of at-risk infants and timely access to rehabilitation interventions are essential for improving long-term outcomes. The General Movements Assessment (GMA), performed in the first months of life, has high sensitivity and specificity to predict CP; however, the neurological correlates of general movements remain unclear. This analysis aimed to investigate the relationship between white matter integrity and general movements in infants with perinatal brain injury using advanced neuroimaging techniques. Methods: Diffusion-weighted MRI data were analyzed in 17 infants, 12 with perinatal brain injury and 5 typically developing infants. Tractography was used to identify the corticospinal tract, a key motor pathway often affected by perinatal brain injury, and tract-based spatial statistics (TBSS) were used to examine broader white matter networks. Diffusion parameters from the diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models were compared between infants with and without typical general movements. Results: Corticospinal tract integrity did not differ between groups when averaged across hemispheres. However, infants with asymmetric general movements exhibited greater corticospinal tract asymmetries. A subset of infants with atypical general movement trajectories at <6 weeks and 3–5 months of age showed reduced corticospinal tract integrity compared to those with typical general movements. TBSS revealed significant differences in white matter integrity between infants with typical and atypical general movements in several white matter pathways, including the corpus callosum, the right posterior corona radiata, bilateral posterior thalamic radiations, the left fornix/stria terminalis, and bilateral tapetum. Conclusions: These findings support and expand upon previous research suggesting that white matter integrity across multiple brain regions plays a role in the formation of general movements. Corticospinal integrity alone was not strongly associated with general movements; interhemispheric and cortical-subcortical connectivity appear critical. These findings underscore the need for further research in larger, diverse populations to refine early biomarkers of neurodevelopmental impairment and guide targeted interventions.
ISSN:2076-3425