On a nonlinear degenerate evolution equation with strong damping

In this paper we consider the nonlinear degenerate evolution equation with strong damping,(*)      {K(x,t)utt−Δu−Δut+F(u)=0   in   Q=Ω×]0,T[u(x,0)=u0,   (ku′)(x,0)=0   in   Ωu(x,t)=0           on   ∑=Γ×]0,T[where K is a function with K(x,t)≥0, K(x,0)=0 and F is a continuous real function satisfying(...

Full description

Saved in:
Bibliographic Details
Main Authors: Jorge Ferreira, Ducival Carvalho Pereira
Format: Article
Language:English
Published: Wiley 1992-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S016117129200070X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849398511254110208
author Jorge Ferreira
Ducival Carvalho Pereira
author_facet Jorge Ferreira
Ducival Carvalho Pereira
author_sort Jorge Ferreira
collection DOAJ
description In this paper we consider the nonlinear degenerate evolution equation with strong damping,(*)      {K(x,t)utt−Δu−Δut+F(u)=0   in   Q=Ω×]0,T[u(x,0)=u0,   (ku′)(x,0)=0   in   Ωu(x,t)=0           on   ∑=Γ×]0,T[where K is a function with K(x,t)≥0, K(x,0)=0 and F is a continuous real function satisfying(**)     sF(s)≥0,   for   all   s∈R,             Ω is a bounded domain of Rn, with smooth boundary Γ. We prove the existence of a global weak solution for (*).
format Article
id doaj-art-a1b6a2b2397e48dea6b003796f85396c
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1992-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-a1b6a2b2397e48dea6b003796f85396c2025-08-20T03:38:35ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251992-01-0115354355210.1155/S016117129200070XOn a nonlinear degenerate evolution equation with strong dampingJorge Ferreira0Ducival Carvalho Pereira1IM/UFRJ and Univ. Estadual de Maringá, Paraná, BrazilUFPA, Belém, Pará, BrazilIn this paper we consider the nonlinear degenerate evolution equation with strong damping,(*)      {K(x,t)utt−Δu−Δut+F(u)=0   in   Q=Ω×]0,T[u(x,0)=u0,   (ku′)(x,0)=0   in   Ωu(x,t)=0           on   ∑=Γ×]0,T[where K is a function with K(x,t)≥0, K(x,0)=0 and F is a continuous real function satisfying(**)     sF(s)≥0,   for   all   s∈R,             Ω is a bounded domain of Rn, with smooth boundary Γ. We prove the existence of a global weak solution for (*).http://dx.doi.org/10.1155/S016117129200070Xweak solutionsevolution equation with damping.
spellingShingle Jorge Ferreira
Ducival Carvalho Pereira
On a nonlinear degenerate evolution equation with strong damping
International Journal of Mathematics and Mathematical Sciences
weak solutions
evolution equation with damping.
title On a nonlinear degenerate evolution equation with strong damping
title_full On a nonlinear degenerate evolution equation with strong damping
title_fullStr On a nonlinear degenerate evolution equation with strong damping
title_full_unstemmed On a nonlinear degenerate evolution equation with strong damping
title_short On a nonlinear degenerate evolution equation with strong damping
title_sort on a nonlinear degenerate evolution equation with strong damping
topic weak solutions
evolution equation with damping.
url http://dx.doi.org/10.1155/S016117129200070X
work_keys_str_mv AT jorgeferreira onanonlineardegenerateevolutionequationwithstrongdamping
AT ducivalcarvalhopereira onanonlineardegenerateevolutionequationwithstrongdamping