High-Fidelity Electron Spin Gates for Scaling Diamond Quantum Registers

Diamond is a promising platform for quantum information processing as it can host highly coherent qubits that could allow for the construction of large quantum registers. A prerequisite for such devices is a coherent interaction between nitrogen-vacancy (NV) electron spins enabling scalable entangle...

Full description

Saved in:
Bibliographic Details
Main Authors: T. Joas, F. Ferlemann, R. Sailer, P. J. Vetter, J. Zhang, R. S. Said, T. Teraji, S. Onoda, T. Calarco, G. Genov, M. M. Müller, F. Jelezko
Format: Article
Language:English
Published: American Physical Society 2025-05-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.15.021069
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diamond is a promising platform for quantum information processing as it can host highly coherent qubits that could allow for the construction of large quantum registers. A prerequisite for such devices is a coherent interaction between nitrogen-vacancy (NV) electron spins enabling scalable entanglement. Entanglement between dipolar-coupled NV spin pairs has been demonstrated but with a limited fidelity, and its error sources have not been characterized. Here, we design and implement a robust two-qubit gate between NV electron spins in diamond and quantify the influence of multiple error sources on the gate performance. Experimentally, we demonstrate a record gate fidelity of F_{2q}=(96.0±2.5)% under ambient conditions. Our identification of the dominant errors paves the way towards NV-NV gates beyond the error correction threshold.
ISSN:2160-3308