Rapid Intensification of Typhoon Rammasun (2014) with Strong Vertical Wind Shear
From a traditional point of view, the growth of a tropical cyclone (TC) requires that the vertical wind shear (VWS) should be weak. However, Typhoon Rammasun (2014) underwent a rapid intensification (RI) even in the presence of a strong VWS background. This study investigates the counterintuive phen...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/3/297 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | From a traditional point of view, the growth of a tropical cyclone (TC) requires that the vertical wind shear (VWS) should be weak. However, Typhoon Rammasun (2014) underwent a rapid intensification (RI) even in the presence of a strong VWS background. This study investigates the counterintuive phenomenon, using the multiscale window transform (MWT) and the theory of canonical transfer. For the first time, the diagnostic results show that the strong VWS provided additional available potential energy (APE) to the mid-to-upper troposphere through baroclinic instability. This APE was converted into kinetic energy (KE) via buoyancy conversion and transported to the lower troposphere by pressure gradient, increasing the lower-troposphere wind speed. The strong VWS facilitated the RI in two main ways. First, it was via baroclinic instability. Strong VWS facilitated the transfer of APE from the background flow window to the typhoon scale window, supplying additional APE to the mid-to-upper troposphere, hence enhancing the warm-core structure. Second, the VWS direction shifted from an east-west orientation to a north-south orientation. This directional change put the typhoon’s vertical alignment from a westward tilt back to a straighter one. This effectively suppressed the destructive effects of the asymmetric circulation, and promoted the conversion of APE into KE via buoyancy conversion, hence contributed to the RI. |
|---|---|
| ISSN: | 2073-4433 |