The Characteristics of Runoff Process Structure Changes under the Influence of Climate Change and Human Activities and the Decomposition of Contribution Rate of Impact Factors

The research of the runoff structure and its influencing factors in the Xilinhe River Basin not only provides indispensable basic data for the economic development, but also has long-term significance for the protection of grasslands. Based on the runoff data of Xilinhot Hydrological Station from 19...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoyuan Song, Zhongyuan Zhu, XiaoKang Xi, Guibin Zhang, Hailong Wang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2021/6673217
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The research of the runoff structure and its influencing factors in the Xilinhe River Basin not only provides indispensable basic data for the economic development, but also has long-term significance for the protection of grasslands. Based on the runoff data of Xilinhot Hydrological Station from 1960 to 2010 and the daily meteorological data of three surrounding weather stations from 1960 to 2010, the paper calculated the potential evapotranspiration with Penman’s formula and used the combination of Mann-Kendall and Pettitt to diagnose the variation points of characteristic value of runoff distribution during the year. The cumulant slope change rate method is used to quantitatively analyze the contribution rate of climate change and human activities to the uneven distribution coefficient and the complete adjustment coefficient of runoff during the year. The results show that (1) the monthly distribution of runoff in the Xilinhe River Basin is obviously “bimodal” during the year, and the uneven coefficient, complete adjustment coefficient, and concentration in the 2000s are significantly higher than those of 60s-90s. (2) In 1998, the coefficient of uneven distribution of runoff in the Xilinhe River Basin and the coefficient of complete adjustment both showed abrupt changes. (3) Climate change and human activities contributed 11.48% and 88.52% and 9.35% and 90.65% to the uneven distribution coefficient and the complete adjustment coefficient, respectively, of the runoff in the Xilinhe River Basin. Human activities are the main driving factors for changes in the distribution of runoff in the Xilinhe River Basin during the year.
ISSN:1468-8115
1468-8123