PSO-Based Robust Control of SISO Systems with Application to a Hydraulic Inverted Pendulum

This work will present an algorithmic approach for robust control focusing on hydraulic–mechanical systems. The approach is applied to a hydraulic actuator driving a cart with an inverted pendulum. The algorithmic approach aims to satisfy two robust control requirements for single input single outpu...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael G. Skarpetis, Nikolaos D. Kouvakas, Fotis N. Koumboulis, Marios Tsoukalas
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Eng
Subjects:
Online Access:https://www.mdpi.com/2673-4117/6/7/146
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work will present an algorithmic approach for robust control focusing on hydraulic–mechanical systems. The approach is applied to a hydraulic actuator driving a cart with an inverted pendulum. The algorithmic approach aims to satisfy two robust control requirements for single input single output (SISO) linear systems with nonlinear uncertain structure. The first control requirement is robust stabilization, and the second is robust asymptotic command following for arbitrary reference signals. The approach is analyzed in two stages. In the first stage, the stability regions of the controller parameters are identified. In the second stage, a Particle Swarm Optimization Algorithm (PSO) is applied to find suboptimal solutions for the controller parameters in these regions, with respect to a suitable performance cost function. The application of the approach to a hydraulic actuator, driving a cart with an inverted pendulum, satisfies the goal of achieving precise control of the pendulum angle, despite the system’s inherent physical uncertainties.
ISSN:2673-4117