Estimation of Atmospheric Boundary Layer Turbulence Parameters over the South China Sea Based on Multi-Source Data
Understanding optical turbulence within the atmospheric boundary layer (ABL) is essential for refining atmospheric motion analyses, enhancing numerical weather prediction models, and improving light propagation assessments. This study develops an optical turbulence model for the boundary layer over...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/11/1929 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Understanding optical turbulence within the atmospheric boundary layer (ABL) is essential for refining atmospheric motion analyses, enhancing numerical weather prediction models, and improving light propagation assessments. This study develops an optical turbulence model for the boundary layer over the South China Sea (SCS) by integrating multiple observational and reanalysis datasets, including ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF), radiosonde observations, coherent Doppler wind lidar (CDWL), and ultrasonic anemometer (CSAT3) measurements. Utilizing Monin–Obukhov Similarity Theory (MOST) as the theoretical foundation, the model’s performance is evaluated by comparing its outputs with the observed diurnal cycle of near-surface optical turbulence. Error analysis indicates a root mean square error (RMSE) of less than 1 and a correlation coefficient exceeding 0.6, validating the model’s predictive capability. Moreover, this study demonstrates the feasibility of employing ERA5-derived temperature and pressure profiles as alternative inputs for optical turbulence modeling while leveraging CDWL’s high-resolution observational capacity for all-weather turbulence characterization. A comprehensive statistical analysis of the atmospheric refractive index structure constant (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>C</mi><mrow><mi>n</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula>) from November 2019 to September 2020 highlights its critical implications for optoelectronic system optimization and astronomical observatory site selection in the SCS region. |
|---|---|
| ISSN: | 2072-4292 |