Free Vibrations with Large Amplitude of Axially Loaded Beams on an Elastic Foundation Using the Adomian Modified Decomposition Method

Analytical solutions describing free transverse vibrations with large amplitude of axially loaded Euler–Bernoulli beams for various end restrains resting on a Winkler one-parameter foundation are obtained using the Adomian modified decomposition method (AMDM). The AMDM allows the governing equation...

Full description

Saved in:
Bibliographic Details
Main Authors: Desmond Adair, Askar Ibrayev, Alima Tazabekova, Jong R. Kim
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/3405075
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analytical solutions describing free transverse vibrations with large amplitude of axially loaded Euler–Bernoulli beams for various end restrains resting on a Winkler one-parameter foundation are obtained using the Adomian modified decomposition method (AMDM). The AMDM allows the governing equation to become a recursive algebraic equation, and, after some additional simple mathematical operations, the equations can be cast as an eigenvector problem whose solution results in the calculation of natural frequencies and corresponding closed-form series solution of the mode shapes. Important to the use of the Adomian modified decomposition method is the treatment of the nonlinear Fredholm integral coefficient, which forms part of the governing equation. In addition to the calculation of natural frequencies and mode shapes, investigations are made of the effects on the free vibrations of the Winkler parameter and of increasing the axial loading.
ISSN:1070-9622
1875-9203