Zeros of block-symmetric polynomials on Banach spaces

We investigate sets of zeros of block-symmetric polynomials on the direct sums of sequence spaces. Block-symmetric polynomials are more general objects than classical symmetric polynomials. An analogues of the Hilbert Nullstellensatz Theorem for block-symmetric polynomials on $\ell_p(\mathbb{C}^n)=\...

Full description

Saved in:
Bibliographic Details
Main Author: V. Kravtsiv
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2020-06-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/32
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849416256603553792
author V. Kravtsiv
author_facet V. Kravtsiv
author_sort V. Kravtsiv
collection DOAJ
description We investigate sets of zeros of block-symmetric polynomials on the direct sums of sequence spaces. Block-symmetric polynomials are more general objects than classical symmetric polynomials. An analogues of the Hilbert Nullstellensatz Theorem for block-symmetric polynomials on $\ell_p(\mathbb{C}^n)=\ell_p \oplus \ldots \oplus \ell_p$ and $\ell_1 \oplus \ell_{\infty}$ is proved. Also, we show that if a polynomial $P$ has a block-symmetric zero set then it must be block-symmetric.
format Article
id doaj-art-a07863f363274693ab9de7d2b4bb36fa
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2020-06-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-a07863f363274693ab9de7d2b4bb36fa2025-08-20T03:33:14ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202020-06-0153220621110.30970/ms.53.2.206-21132Zeros of block-symmetric polynomials on Banach spacesV. Kravtsiv0Vasyl Stefanyk Precarpathian National UniversityWe investigate sets of zeros of block-symmetric polynomials on the direct sums of sequence spaces. Block-symmetric polynomials are more general objects than classical symmetric polynomials. An analogues of the Hilbert Nullstellensatz Theorem for block-symmetric polynomials on $\ell_p(\mathbb{C}^n)=\ell_p \oplus \ldots \oplus \ell_p$ and $\ell_1 \oplus \ell_{\infty}$ is proved. Also, we show that if a polynomial $P$ has a block-symmetric zero set then it must be block-symmetric.http://matstud.org.ua/ojs/index.php/matstud/article/view/32nullstellensatzblock-symmetric polynomialszero set of polynomials on banach spaces
spellingShingle V. Kravtsiv
Zeros of block-symmetric polynomials on Banach spaces
Математичні Студії
nullstellensatz
block-symmetric polynomials
zero set of polynomials on banach spaces
title Zeros of block-symmetric polynomials on Banach spaces
title_full Zeros of block-symmetric polynomials on Banach spaces
title_fullStr Zeros of block-symmetric polynomials on Banach spaces
title_full_unstemmed Zeros of block-symmetric polynomials on Banach spaces
title_short Zeros of block-symmetric polynomials on Banach spaces
title_sort zeros of block symmetric polynomials on banach spaces
topic nullstellensatz
block-symmetric polynomials
zero set of polynomials on banach spaces
url http://matstud.org.ua/ojs/index.php/matstud/article/view/32
work_keys_str_mv AT vkravtsiv zerosofblocksymmetricpolynomialsonbanachspaces