A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows
This paper presents a Bayesian network model for estimating origin-destination matrices. Most existing Bayesian methods adopt prior OD matrixes, which are always troublesome to be obtained. Since transportation systems normally have stored large amounts of historical link flows, a Bayesian network m...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2014/192470 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832555937868546048 |
---|---|
author | Lin Cheng Senlai Zhu Zhaoming Chu Jingxu Cheng |
author_facet | Lin Cheng Senlai Zhu Zhaoming Chu Jingxu Cheng |
author_sort | Lin Cheng |
collection | DOAJ |
description | This paper presents a Bayesian network model for estimating origin-destination matrices. Most existing Bayesian methods adopt prior OD matrixes, which are always troublesome to be obtained. Since transportation systems normally have stored large amounts of historical link flows, a Bayesian network model using these prior link flows is proposed. Based on some observed link flows, the estimation results are updated. Under normal distribution assumption, the proposed Bayesian network model considers the level of total traffic flow, the variability of link flows, and the violation of the traffic flow conservation law. Both the point estimation and the corresponding probability intervals can be provided by this model. To solve the Bayesian network model, a specific procedure which can avoid matrix inversion is proposed. Finally, a numerical example is given to illustrate the proposed Bayesian network method. The results show that the proposed method has a high accuracy and practical applicability. |
format | Article |
id | doaj-art-a0450e8ab34f4f7facf6e430d8ec43ad |
institution | Kabale University |
issn | 1026-0226 1607-887X |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Discrete Dynamics in Nature and Society |
spelling | doaj-art-a0450e8ab34f4f7facf6e430d8ec43ad2025-02-03T05:46:45ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2014-01-01201410.1155/2014/192470192470A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link FlowsLin Cheng0Senlai Zhu1Zhaoming Chu2Jingxu Cheng3School of Transportation, Southeast University, Nanjing 210096, ChinaSchool of Transportation, Southeast University, Nanjing 210096, ChinaSchool of Transportation, Southeast University, Nanjing 210096, ChinaSchool of Transportation, Southeast University, Nanjing 210096, ChinaThis paper presents a Bayesian network model for estimating origin-destination matrices. Most existing Bayesian methods adopt prior OD matrixes, which are always troublesome to be obtained. Since transportation systems normally have stored large amounts of historical link flows, a Bayesian network model using these prior link flows is proposed. Based on some observed link flows, the estimation results are updated. Under normal distribution assumption, the proposed Bayesian network model considers the level of total traffic flow, the variability of link flows, and the violation of the traffic flow conservation law. Both the point estimation and the corresponding probability intervals can be provided by this model. To solve the Bayesian network model, a specific procedure which can avoid matrix inversion is proposed. Finally, a numerical example is given to illustrate the proposed Bayesian network method. The results show that the proposed method has a high accuracy and practical applicability.http://dx.doi.org/10.1155/2014/192470 |
spellingShingle | Lin Cheng Senlai Zhu Zhaoming Chu Jingxu Cheng A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows Discrete Dynamics in Nature and Society |
title | A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows |
title_full | A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows |
title_fullStr | A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows |
title_full_unstemmed | A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows |
title_short | A Bayesian Network Model for Origin-Destination Matrices Estimation Using Prior and Some Observed Link Flows |
title_sort | bayesian network model for origin destination matrices estimation using prior and some observed link flows |
url | http://dx.doi.org/10.1155/2014/192470 |
work_keys_str_mv | AT lincheng abayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows AT senlaizhu abayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows AT zhaomingchu abayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows AT jingxucheng abayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows AT lincheng bayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows AT senlaizhu bayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows AT zhaomingchu bayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows AT jingxucheng bayesiannetworkmodelfororigindestinationmatricesestimationusingpriorandsomeobservedlinkflows |