Scintillator based nuclear photovoltaic batteries for power generation at microwatts level

A nuclear photovoltaic battery uses scintillator to convert radiation into visible light, which is then collected by a photovoltaic (PV) cell to generate electricity. If the radiation is gamma-rays emitted from external sources, the battery may also be referred as gammavoltaic battery. In this study...

Full description

Saved in:
Bibliographic Details
Main Authors: Ibrahim Oksuz, Sabin Neupane, Yanfa Yan, Lei R. Cao
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Optical Materials: X
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590147825000038
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A nuclear photovoltaic battery uses scintillator to convert radiation into visible light, which is then collected by a photovoltaic (PV) cell to generate electricity. If the radiation is gamma-rays emitted from external sources, the battery may also be referred as gammavoltaic battery. In this study, a polycrystalline CdTe solar cell was optically coupled with a 2.0 cm × 2.0 cm × 1.0 cm Gadolinium Aluminum Gallium Garnet (GAGG) scintillator, and the resulting device was tested using intense gamma radiation fields from a Cs-137 (1.5 kRad/h) and a Co-60 (10 kRad/h) irradiator. Measurements with Cs-137 provided a maximum power output (Pmax) of ∼288 nW, with a short-circuit current density (Jsc) of ∼1.22 μA/cm2 and an open-circuit voltage (Voc) of ∼0.34 V. In contrast, Co-60 irradiator gave a Pmax of 1.5 μW, with a Jsc of ∼4.73 μA/cm2 and a Voc of ∼0.38 V. The CdTe was also paired with a Lutetium-Yttrium Oxyorthosilicate (LYSO) crystal and tested with the Cs-137 source. The experiment presents a scalable option to reach to higher power outputs by harvesting gamma radiation fields in many cases where high radiation field demands heavy shielding and is often regarded as unwanted waste.
ISSN:2590-1478