Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics
This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperi...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2024-01-01
|
Series: | Journal of Diabetes Research |
Online Access: | http://dx.doi.org/10.1155/2024/1222395 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832553213672292352 |
---|---|
author | Jiayuan He Xiang Li Man Yan Xinsheng Chen Chang Sun Jiajun Tan Yinsheng Song Hong Xu Liang Wu Zhengnan Yang |
author_facet | Jiayuan He Xiang Li Man Yan Xinsheng Chen Chang Sun Jiajun Tan Yinsheng Song Hong Xu Liang Wu Zhengnan Yang |
author_sort | Jiayuan He |
collection | DOAJ |
description | This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury. |
format | Article |
id | doaj-art-9fef8cc07dac45359d08db0ea9544970 |
institution | Kabale University |
issn | 2314-6753 |
language | English |
publishDate | 2024-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Diabetes Research |
spelling | doaj-art-9fef8cc07dac45359d08db0ea95449702025-02-03T05:54:35ZengWileyJournal of Diabetes Research2314-67532024-01-01202410.1155/2024/1222395Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum MetabolomicsJiayuan He0Xiang Li1Man Yan2Xinsheng Chen3Chang Sun4Jiajun Tan5Yinsheng Song6Hong Xu7Liang Wu8Zhengnan Yang9Health Testing CenterMedical Laboratory DepartmentDepartment of Laboratory MedicineHospital Infection-Disease Control DepartmentDepartment of Laboratory MedicineDepartment of Laboratory MedicineHealth Testing CenterHealth Testing CenterDepartment of Laboratory MedicineDepartment of Clinical LaboratoryThis study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.http://dx.doi.org/10.1155/2024/1222395 |
spellingShingle | Jiayuan He Xiang Li Man Yan Xinsheng Chen Chang Sun Jiajun Tan Yinsheng Song Hong Xu Liang Wu Zhengnan Yang Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics Journal of Diabetes Research |
title | Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics |
title_full | Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics |
title_fullStr | Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics |
title_full_unstemmed | Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics |
title_short | Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics |
title_sort | inulin reduces kidney damage in type 2 diabetic mice by decreasing inflammation and serum metabolomics |
url | http://dx.doi.org/10.1155/2024/1222395 |
work_keys_str_mv | AT jiayuanhe inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT xiangli inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT manyan inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT xinshengchen inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT changsun inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT jiajuntan inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT yinshengsong inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT hongxu inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT liangwu inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics AT zhengnanyang inulinreduceskidneydamageintype2diabeticmicebydecreasinginflammationandserummetabolomics |