Tilings with the neighborhood property
The neighborhood N(T) of a tile T is the set of all tiles which meet T in at least one point. If for each tile T there is a different tile T1 such that N(T)=N(T1) then we say the tiling has the neighborhood property (NEBP). Grünbaum and Shepard conjecture that it is impossible to have a monohedral t...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
1996-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1155/S0161171296000063 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The neighborhood N(T) of a tile T is the set of all tiles which meet T in at least one point. If for each tile T there is a different tile T1 such that N(T)=N(T1) then we say the tiling has the neighborhood property (NEBP). Grünbaum and Shepard conjecture that it is impossible to have a monohedral tiling of the plane such that every tile T has two different tiles T1, T2 with N(T)=N(T1)=N(T2). If all tiles are convex we show this conjecture is true by characterizing the convex plane tilings with NEBP. More precisely we prove that a convex plane tiling with NEBP has only triangular tiles and each tile has a 3-valent vertex. Removing 3-valent vertices and the incident edges from such a tiling yields an edge-to-edge planar triangulation. Conversely, given any edge-to-edge planar triangulation followed by insertion of a vertex and three edges that triangulate each triangle yields a convex plane tiling with NEBP. We exhibit an infinite family of nonconvex monohedral plane tilings with NEBP. We briefly discuss tilings of R3 with NEBP and exhibit a monohedral tetrahedral tiling of R3 with NEBP. |
|---|---|
| ISSN: | 0161-1712 1687-0425 |