Random trilinear forms and the Schur multiplication of tensors

We obtain estimates for the distribution of the norm of the random trilinear form A:ℓrM×ℓpN×ℓqK→ℂ, defined by A(ei,ej,ek)=aijk, where the aijk's are uniformly bounded, independent, mean zero random variables. As an application, we make progress on the problem when ℓr⊗⌣ℓp⊗⌣ℓq is a Banach algebra...

Full description

Saved in:
Bibliographic Details
Main Authors: Ibrahim Almasri, Jinlu Li, Andrew Tonge
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171200000715
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556287039111168
author Ibrahim Almasri
Jinlu Li
Andrew Tonge
author_facet Ibrahim Almasri
Jinlu Li
Andrew Tonge
author_sort Ibrahim Almasri
collection DOAJ
description We obtain estimates for the distribution of the norm of the random trilinear form A:ℓrM×ℓpN×ℓqK→ℂ, defined by A(ei,ej,ek)=aijk, where the aijk's are uniformly bounded, independent, mean zero random variables. As an application, we make progress on the problem when ℓr⊗⌣ℓp⊗⌣ℓq is a Banach algebra under the Schur multiplication.
format Article
id doaj-art-9fe77c5fdab347f3a0ba65f611e48f9e
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2000-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-9fe77c5fdab347f3a0ba65f611e48f9e2025-02-03T05:45:47ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252000-01-01231697610.1155/S0161171200000715Random trilinear forms and the Schur multiplication of tensorsIbrahim Almasri0Jinlu Li1Andrew Tonge2College of Engineering and Technology, The West Bank, Hebron, Palestinian AuthorityMathematics Department, Shawnee State University, Portsmouth 45662, OH, USADepartment of Mathematics and Computer Science, Kent State University, Kent 44242, OH, USAWe obtain estimates for the distribution of the norm of the random trilinear form A:ℓrM×ℓpN×ℓqK→ℂ, defined by A(ei,ej,ek)=aijk, where the aijk's are uniformly bounded, independent, mean zero random variables. As an application, we make progress on the problem when ℓr⊗⌣ℓp⊗⌣ℓq is a Banach algebra under the Schur multiplication.http://dx.doi.org/10.1155/S0161171200000715Random tensorsSchur multiplication.
spellingShingle Ibrahim Almasri
Jinlu Li
Andrew Tonge
Random trilinear forms and the Schur multiplication of tensors
International Journal of Mathematics and Mathematical Sciences
Random tensors
Schur multiplication.
title Random trilinear forms and the Schur multiplication of tensors
title_full Random trilinear forms and the Schur multiplication of tensors
title_fullStr Random trilinear forms and the Schur multiplication of tensors
title_full_unstemmed Random trilinear forms and the Schur multiplication of tensors
title_short Random trilinear forms and the Schur multiplication of tensors
title_sort random trilinear forms and the schur multiplication of tensors
topic Random tensors
Schur multiplication.
url http://dx.doi.org/10.1155/S0161171200000715
work_keys_str_mv AT ibrahimalmasri randomtrilinearformsandtheschurmultiplicationoftensors
AT jinluli randomtrilinearformsandtheschurmultiplicationoftensors
AT andrewtonge randomtrilinearformsandtheschurmultiplicationoftensors