The Modified Stochastic Theta Scheme for Mean-Field Stochastic Differential Equations Driven by G-Brownian Motion Under Local One-Sided Lipschitz Conditions

In this paper, we focus on mean-field stochastic differential equations driven by G-Brownian motion (G-MFSDEs for short) with a drift coefficient satisfying the local one-sided Lipschitz condition with respect to the state variable and the global Lipschitz condition with respect to the law. We are c...

Full description

Saved in:
Bibliographic Details
Main Authors: Pengfei Zhao, Haiyan Yuan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/12/1993
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we focus on mean-field stochastic differential equations driven by G-Brownian motion (G-MFSDEs for short) with a drift coefficient satisfying the local one-sided Lipschitz condition with respect to the state variable and the global Lipschitz condition with respect to the law. We are concerned with the well-posedness and the numerical approximation of the G-MFSDE. Probability uncertainty leads the resulting expectation usually to be the G-expectation, which means that we cannot apply the numerical approximation for McKean–Vlasov equations to G-MFSDEs directly. To numerically approximate the G-MFSDE, with the help of G-expectation theory, we use the sample average value to represent the law and establish the interacting particle system whose mean square limit is the G-MFSDE. After this, we introduce the modified stochastic theta method to approximate the interacting particle system and study its strong convergence and asymptotic mean square stability. Finally, we present an example to verify our theoretical results.
ISSN:2227-7390