Comparative Study of Red and Grey Selenium Nanoparticles on Organ-Specific Selenium Deposition and Growth Performance in Japanese Quails

Selenium (Se) is an essential trace element required for various physiological functions in agriculture. Nanotechnology is applied to produce selenium nanoparticles (SeNPs) that offer new advantages, enhancing their bioavailability and reducing toxicity. To further improve the stability of Se nanoel...

Full description

Saved in:
Bibliographic Details
Main Authors: Aya Ferroudj, Arjun Muthu, Daniella Sári, Gréta Törős, Áron Beni, Levente Czeglédi, Renáta Knop, Hassan El-Ramady, József Prokisch
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/11/801
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Selenium (Se) is an essential trace element required for various physiological functions in agriculture. Nanotechnology is applied to produce selenium nanoparticles (SeNPs) that offer new advantages, enhancing their bioavailability and reducing toxicity. To further improve the stability of Se nanoelements in the poultry industry, the grey form of Se was recently offered as a potential alternative. However, its impact on bioaccessibility, metabolism, and overall animal efficiency remains undetermined. This study investigates the impact of red and grey SeNPs on Se content in the liver, blood cellular fraction (BCF), kidney, testis, and eyes, as well as the feed intake (FI) and growth performance, of adult Japanese quails. Adult quails were randomly assigned to five groups: a control (C0) and four groups receiving either red or grey Se nanoparticles (SeNPs) at 0.05 or 0.5 mg/kg, in addition to the basal diet which already contained 0.042 mg/kg Se from the premix, resulting in total Se contents of approximately 0.092 and 0.542 mg/kg in the treatment groups (T1–T4), with four replicates per group. The growth performance of quails fed with nano-Se-supplemented diets showed significant variation across groups (<i>p</i> < 0.05), with body weight differing by up to 20% between the highest performing group (T2) and the lowest (T1). FI showed no significant differences across groups. The results indicated that Se accumulation differed significantly between treatments. The selenium levels in the liver increased in a dose-dependent manner, with the highest accumulation observed in T4 (0.5 mg/kg grey SeNPs), at 42% above control levels. This pattern suggests that the liver is a primary organ for selenium storage and metabolism. The greatest Se content in BCFs was recorded in the groups that received grey selenium (T3 and T4) and red selenium at high concentrations (T2), while the group given red selenium at low concentrations (T1) and the control (C0) had the lowest Se accumulation. In the kidney tissues and testis, the Se content exhibited no significant differences between the treated groups and the control. The observed variations in the eye and breast muscle Se content among treatment groups reflect the differences in selenium bioavailability, metabolism, and tissue-specific regulatory mechanisms. These findings demonstrate that grey SeNPs can significantly elevate Se bioavailability in quails, particularly in target organs, and enhance the growth performance without notable changes in feed intake. This highlights the potential of SeNPs in enhancing quail nutrition, although further research is needed to establish optimal dosing strategies for safe, effective use.
ISSN:2079-4991