Decompositions of the extended Selberg class functions
Let F(s)F\left(s) be a function from the extended Selberg class. We consider decompositions F(s)=f(h(s))F\left(s)=f\left(h\left(s)), where ff and hh are meromorphic functions. Among other things, we show that FF is prime if and only if the greatest common divisor of the orders of all zeros and the p...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2025-07-01
|
| Series: | Open Mathematics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/math-2025-0177 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849343429357600768 |
|---|---|
| author | Garunkštis Ramūnas Panavas Tadas Šimenas Raivydas |
| author_facet | Garunkštis Ramūnas Panavas Tadas Šimenas Raivydas |
| author_sort | Garunkštis Ramūnas |
| collection | DOAJ |
| description | Let F(s)F\left(s) be a function from the extended Selberg class. We consider decompositions F(s)=f(h(s))F\left(s)=f\left(h\left(s)), where ff and hh are meromorphic functions. Among other things, we show that FF is prime if and only if the greatest common divisor of the orders of all zeros and the pole of FF is 1. |
| format | Article |
| id | doaj-art-9f8146befc9b4465804d19db0f7730e9 |
| institution | Kabale University |
| issn | 2391-5455 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | De Gruyter |
| record_format | Article |
| series | Open Mathematics |
| spelling | doaj-art-9f8146befc9b4465804d19db0f7730e92025-08-20T03:43:00ZengDe GruyterOpen Mathematics2391-54552025-07-01231pp. 36738510.1515/math-2025-0177Decompositions of the extended Selberg class functionsGarunkštis Ramūnas0Panavas Tadas1Šimenas Raivydas2Faculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Vilnius, LithuaniaFaculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Vilnius, LithuaniaFaculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Vilnius, LithuaniaLet F(s)F\left(s) be a function from the extended Selberg class. We consider decompositions F(s)=f(h(s))F\left(s)=f\left(h\left(s)), where ff and hh are meromorphic functions. Among other things, we show that FF is prime if and only if the greatest common divisor of the orders of all zeros and the pole of FF is 1.https://doi.org/10.1515/math-2025-0177extended selberg classprime functions11m06 |
| spellingShingle | Garunkštis Ramūnas Panavas Tadas Šimenas Raivydas Decompositions of the extended Selberg class functions Open Mathematics extended selberg class prime functions 11m06 |
| title | Decompositions of the extended Selberg class functions |
| title_full | Decompositions of the extended Selberg class functions |
| title_fullStr | Decompositions of the extended Selberg class functions |
| title_full_unstemmed | Decompositions of the extended Selberg class functions |
| title_short | Decompositions of the extended Selberg class functions |
| title_sort | decompositions of the extended selberg class functions |
| topic | extended selberg class prime functions 11m06 |
| url | https://doi.org/10.1515/math-2025-0177 |
| work_keys_str_mv | AT garunkstisramunas decompositionsoftheextendedselbergclassfunctions AT panavastadas decompositionsoftheextendedselbergclassfunctions AT simenasraivydas decompositionsoftheextendedselbergclassfunctions |