Decompositions of the extended Selberg class functions

Let F(s)F\left(s) be a function from the extended Selberg class. We consider decompositions F(s)=f(h(s))F\left(s)=f\left(h\left(s)), where ff and hh are meromorphic functions. Among other things, we show that FF is prime if and only if the greatest common divisor of the orders of all zeros and the p...

Full description

Saved in:
Bibliographic Details
Main Authors: Garunkštis Ramūnas, Panavas Tadas, Šimenas Raivydas
Format: Article
Language:English
Published: De Gruyter 2025-07-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2025-0177
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849343429357600768
author Garunkštis Ramūnas
Panavas Tadas
Šimenas Raivydas
author_facet Garunkštis Ramūnas
Panavas Tadas
Šimenas Raivydas
author_sort Garunkštis Ramūnas
collection DOAJ
description Let F(s)F\left(s) be a function from the extended Selberg class. We consider decompositions F(s)=f(h(s))F\left(s)=f\left(h\left(s)), where ff and hh are meromorphic functions. Among other things, we show that FF is prime if and only if the greatest common divisor of the orders of all zeros and the pole of FF is 1.
format Article
id doaj-art-9f8146befc9b4465804d19db0f7730e9
institution Kabale University
issn 2391-5455
language English
publishDate 2025-07-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj-art-9f8146befc9b4465804d19db0f7730e92025-08-20T03:43:00ZengDe GruyterOpen Mathematics2391-54552025-07-01231pp. 36738510.1515/math-2025-0177Decompositions of the extended Selberg class functionsGarunkštis Ramūnas0Panavas Tadas1Šimenas Raivydas2Faculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Vilnius, LithuaniaFaculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Vilnius, LithuaniaFaculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Vilnius, LithuaniaLet F(s)F\left(s) be a function from the extended Selberg class. We consider decompositions F(s)=f(h(s))F\left(s)=f\left(h\left(s)), where ff and hh are meromorphic functions. Among other things, we show that FF is prime if and only if the greatest common divisor of the orders of all zeros and the pole of FF is 1.https://doi.org/10.1515/math-2025-0177extended selberg classprime functions11m06
spellingShingle Garunkštis Ramūnas
Panavas Tadas
Šimenas Raivydas
Decompositions of the extended Selberg class functions
Open Mathematics
extended selberg class
prime functions
11m06
title Decompositions of the extended Selberg class functions
title_full Decompositions of the extended Selberg class functions
title_fullStr Decompositions of the extended Selberg class functions
title_full_unstemmed Decompositions of the extended Selberg class functions
title_short Decompositions of the extended Selberg class functions
title_sort decompositions of the extended selberg class functions
topic extended selberg class
prime functions
11m06
url https://doi.org/10.1515/math-2025-0177
work_keys_str_mv AT garunkstisramunas decompositionsoftheextendedselbergclassfunctions
AT panavastadas decompositionsoftheextendedselbergclassfunctions
AT simenasraivydas decompositionsoftheextendedselbergclassfunctions