Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions

This paper investigates the teleparallel Robertson–Walker (TRW) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></...

Full description

Saved in:
Bibliographic Details
Main Author: Alexandre Landry
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/3/374
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850200171887984640
author Alexandre Landry
author_facet Alexandre Landry
author_sort Alexandre Landry
collection DOAJ
description This paper investigates the teleparallel Robertson–Walker (TRW) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity solutions for a scalar field source. We use the TRW <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity field equations (FEs) for each <i>k</i>-parameter value case added by a scalar field to find new teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we find an easy-to-compute <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solution formula applicable for any scalar field source. Then, we obtain, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> situations, some new analytical <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions, only for specific <i>n</i>-parameter values and well-determined scalar field cases. We can find by those computations a large number of analytical teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions independent of any scalar potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> expression. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> independence makes the FE solving and computations easier. The new solutions will be relevant for future cosmological applications in dark matter, dark energy (DE) quintessence, phantom energy and quintom models of physical processes.
format Article
id doaj-art-9f64d60de07a4d8888d5fe6702d5fcec
institution OA Journals
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-9f64d60de07a4d8888d5fe6702d5fcec2025-08-20T02:12:25ZengMDPI AGMathematics2227-73902025-01-0113337410.3390/math13030374Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity SolutionsAlexandre Landry0Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 3J5, CanadaThis paper investigates the teleparallel Robertson–Walker (TRW) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity solutions for a scalar field source. We use the TRW <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity field equations (FEs) for each <i>k</i>-parameter value case added by a scalar field to find new teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we find an easy-to-compute <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solution formula applicable for any scalar field source. Then, we obtain, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> situations, some new analytical <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions, only for specific <i>n</i>-parameter values and well-determined scalar field cases. We can find by those computations a large number of analytical teleparallel <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></semantics></math></inline-formula> solutions independent of any scalar potential <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> expression. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> independence makes the FE solving and computations easier. The new solutions will be relevant for future cosmological applications in dark matter, dark energy (DE) quintessence, phantom energy and quintom models of physical processes.https://www.mdpi.com/2227-7390/13/3/374scalar field sourceteleparallel gravityteleparallel Robertson–Walkercosmological teleparallel solutionsdark energyquintessence
spellingShingle Alexandre Landry
Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions
Mathematics
scalar field source
teleparallel gravity
teleparallel Robertson–Walker
cosmological teleparallel solutions
dark energy
quintessence
title Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions
title_full Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions
title_fullStr Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions
title_full_unstemmed Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions
title_short Scalar Field Source Teleparallel Robertson–Walker <i>F</i>(<i>T</i>) Gravity Solutions
title_sort scalar field source teleparallel robertson walker i f i i t i gravity solutions
topic scalar field source
teleparallel gravity
teleparallel Robertson–Walker
cosmological teleparallel solutions
dark energy
quintessence
url https://www.mdpi.com/2227-7390/13/3/374
work_keys_str_mv AT alexandrelandry scalarfieldsourceteleparallelrobertsonwalkerifiitigravitysolutions