Dynamic Measurement of Flowing Microparticles in Microfluidics Using Pulsed Modulated Digital Holographic Microscopy
We propose a pulsed modulated digital holographic microscopy (PM-DHM) technique for the dynamic measurement of flowing microparticles in microfluidic systems. By digitally tuning the pulse width and the repetition rate of a laser source within a single-frame exposure, this method enables the recordi...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/12/5/411 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a pulsed modulated digital holographic microscopy (PM-DHM) technique for the dynamic measurement of flowing microparticles in microfluidic systems. By digitally tuning the pulse width and the repetition rate of a laser source within a single-frame exposure, this method enables the recording of multiple images of flowing microparticles at different time points within a single hologram, allowing the quantification of velocity and acceleration. We demonstrate the feasibility of PM-DHM by measuring the velocity, acceleration, and forces exerted on PMMA microspheres and red blood cells flowing in microfluidic chips. Compared to traditional frame-sampling-based imaging methods, this technique has a much higher time resolution (in a range of microseconds) that is limited only by the pulse duration. This method demonstrates significant potential for high-throughput label-free flow cytometry detection and offers promising applications in drug development and cell analysis. |
|---|---|
| ISSN: | 2304-6732 |