PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES

Extreme events are events that rarely occur but they cause substantial losses. Insurance companies need to take extreme events into account in risk management because extreme events can have a negative impact on the company's financial health. As a result, insurance companies need an appropriat...

Full description

Saved in:
Bibliographic Details
Main Authors: Jenisha Then, Ferry Jaya Permana, Benny Yong
Format: Article
Language:English
Published: Universitas Pattimura 2025-01-01
Series:Barekeng
Subjects:
Online Access:https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/13003
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849238003992494080
author Jenisha Then
Ferry Jaya Permana
Benny Yong
author_facet Jenisha Then
Ferry Jaya Permana
Benny Yong
author_sort Jenisha Then
collection DOAJ
description Extreme events are events that rarely occur but they cause substantial losses. Insurance companies need to take extreme events into account in risk management because extreme events can have a negative impact on the company's financial health. As a result, insurance companies need an appropriate loss model that matches the empirical data from these extreme events. A distribution that is heavy-tailed and skewed to the right is a good distribution for modeling the magnitude of losses from extreme events. In this paper, two distributions with heavy tails and skew to the right will be used to model the magnitude of losses from extreme events, namely the lognormal distribution and the Pareto distribution type I. The parameters of these distributions are estimated using two inferences, namely the frequentist and Bayesian inferences. In the frequentist inference, two methods are applied, namely the moment method and maximum likelihood. On Bayesian inference, two prior distributions are used, namely uniform and Jeffrey. Test model suitability is carried out by visually comparing the model distribution function with the empirical distribution function, as well as by comparing the Root Mean Square Error (RMSE) value. The visualization results of the distribution function and RMSE values ​​show that in general, the Bayesian inference is better at estimating parameters than the frequentist inference. In the frequentist inference, the maximum likelihood method can provide better estimated values ​​than the moment method. In the Bayesian inference, the two prior distributions show a relatively similar fit to the data and tend to be better than the frequentist inference.
format Article
id doaj-art-9f2568dc33ff41b0b412ce658e9b9ab5
institution Kabale University
issn 1978-7227
2615-3017
language English
publishDate 2025-01-01
publisher Universitas Pattimura
record_format Article
series Barekeng
spelling doaj-art-9f2568dc33ff41b0b412ce658e9b9ab52025-08-20T04:01:47ZengUniversitas PattimuraBarekeng1978-72272615-30172025-01-0119114115210.30598/barekengvol19iss1pp141-15213003PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCESJenisha Then0Ferry Jaya Permana1Benny Yong2Center for Mathematics and Society, Faculty of Science, Universitas Katolik Parahyangan, IndonesiaCenter for Mathematics and Society, Faculty of Science, Universitas Katolik Parahyangan, IndonesiaCenter for Mathematics and Society, Faculty of Science, Universitas Katolik Parahyangan, IndonesiaExtreme events are events that rarely occur but they cause substantial losses. Insurance companies need to take extreme events into account in risk management because extreme events can have a negative impact on the company's financial health. As a result, insurance companies need an appropriate loss model that matches the empirical data from these extreme events. A distribution that is heavy-tailed and skewed to the right is a good distribution for modeling the magnitude of losses from extreme events. In this paper, two distributions with heavy tails and skew to the right will be used to model the magnitude of losses from extreme events, namely the lognormal distribution and the Pareto distribution type I. The parameters of these distributions are estimated using two inferences, namely the frequentist and Bayesian inferences. In the frequentist inference, two methods are applied, namely the moment method and maximum likelihood. On Bayesian inference, two prior distributions are used, namely uniform and Jeffrey. Test model suitability is carried out by visually comparing the model distribution function with the empirical distribution function, as well as by comparing the Root Mean Square Error (RMSE) value. The visualization results of the distribution function and RMSE values ​​show that in general, the Bayesian inference is better at estimating parameters than the frequentist inference. In the frequentist inference, the maximum likelihood method can provide better estimated values ​​than the moment method. In the Bayesian inference, the two prior distributions show a relatively similar fit to the data and tend to be better than the frequentist inference.https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/13003bayesian inferenceextreme eventsfrequentist inferencelognormal distributionpareto type i distribution
spellingShingle Jenisha Then
Ferry Jaya Permana
Benny Yong
PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES
Barekeng
bayesian inference
extreme events
frequentist inference
lognormal distribution
pareto type i distribution
title PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES
title_full PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES
title_fullStr PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES
title_full_unstemmed PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES
title_short PARAMETER ESTIMATION OF LOGNORMAL AND PARETO TYPE I DISTRIBUTIONS USING FREQUENTIST AND BAYESIAN INFERENCES
title_sort parameter estimation of lognormal and pareto type i distributions using frequentist and bayesian inferences
topic bayesian inference
extreme events
frequentist inference
lognormal distribution
pareto type i distribution
url https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/13003
work_keys_str_mv AT jenishathen parameterestimationoflognormalandparetotypeidistributionsusingfrequentistandbayesianinferences
AT ferryjayapermana parameterestimationoflognormalandparetotypeidistributionsusingfrequentistandbayesianinferences
AT bennyyong parameterestimationoflognormalandparetotypeidistributionsusingfrequentistandbayesianinferences