An Upper Bound for the Weight of the Fine Uniformity

If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">U</mi><mo>)</mo></mrow>...

Full description

Saved in:
Bibliographic Details
Main Authors: Johnny Cuadro, Margarita Gary, Adolfo Pimienta
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/15/2511
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849770527268274176
author Johnny Cuadro
Margarita Gary
Adolfo Pimienta
author_facet Johnny Cuadro
Margarita Gary
Adolfo Pimienta
author_sort Johnny Cuadro
collection DOAJ
description If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">U</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a Hausdorff uniform space, we define the <b>uniform weight</b> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">U</mi><mo>)</mo></mrow></semantics></math></inline-formula> as the smallest cardinal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula> has a basis of cardinality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>. An important topological cardinal of a Tychonoff space <i>X</i> is the number of cozero sets of <i>X</i>, which we denote as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is known that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">U</mi><mo>)</mo><mo>≤</mo><mi>z</mi><mo>(</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> for every compatible uniformity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula> of <i>X</i>. We do not know if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> can be replaced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We concentrate ourselves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi mathvariant="script">U</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">U</mi><mi>n</mi></msub></semantics></math></inline-formula> is the <b>fine uniformity</b> of <i>X</i>, i.e., the one having the family of normal covers as a basis. We establish upper bounds for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi mathvariant="script">U</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> using the character and pseudocharacter in extensions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>×</mo><mi>X</mi></mrow></semantics></math></inline-formula> or using the cardinal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We also find some generalizations of the equivalence: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi mathvariant="script">U</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mo>ℵ</mo><mn>0</mn></msub></mrow></semantics></math></inline-formula> if and only if <i>X</i> is metrizable and the set of non-isolated points of <i>X</i> is compact.
format Article
id doaj-art-9f0de972b366418ea444fcc2ee36fbc0
institution DOAJ
issn 2227-7390
language English
publishDate 2025-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-9f0de972b366418ea444fcc2ee36fbc02025-08-20T03:02:58ZengMDPI AGMathematics2227-73902025-08-011315251110.3390/math13152511An Upper Bound for the Weight of the Fine UniformityJohnny Cuadro0Margarita Gary1Adolfo Pimienta2Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla 080002, ColombiaPrograma de Matemáticas, Universidad del Atlántico, Barranquilla 080002, ColombiaFacultad de Ciencias Básicas y Biomédicas, Vicerrectoría de Investigación, Universidad Simón Bolívar, Barranquilla 080002, ColombiaIf <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">U</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a Hausdorff uniform space, we define the <b>uniform weight</b> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">U</mi><mo>)</mo></mrow></semantics></math></inline-formula> as the smallest cardinal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula> has a basis of cardinality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>. An important topological cardinal of a Tychonoff space <i>X</i> is the number of cozero sets of <i>X</i>, which we denote as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is known that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">U</mi><mo>)</mo><mo>≤</mo><mi>z</mi><mo>(</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> for every compatible uniformity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">U</mi></semantics></math></inline-formula> of <i>X</i>. We do not know if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> can be replaced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We concentrate ourselves in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi mathvariant="script">U</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">U</mi><mi>n</mi></msub></semantics></math></inline-formula> is the <b>fine uniformity</b> of <i>X</i>, i.e., the one having the family of normal covers as a basis. We establish upper bounds for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi mathvariant="script">U</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> using the character and pseudocharacter in extensions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>×</mo><mi>X</mi></mrow></semantics></math></inline-formula> or using the cardinal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We also find some generalizations of the equivalence: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi mathvariant="script">U</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mo>ℵ</mo><mn>0</mn></msub></mrow></semantics></math></inline-formula> if and only if <i>X</i> is metrizable and the set of non-isolated points of <i>X</i> is compact.https://www.mdpi.com/2227-7390/13/15/2511uniform spacesuniform weightfine uniformity<i>Z</i>-embedded<i>C</i><sub>1</sub>-embedded
spellingShingle Johnny Cuadro
Margarita Gary
Adolfo Pimienta
An Upper Bound for the Weight of the Fine Uniformity
Mathematics
uniform spaces
uniform weight
fine uniformity
<i>Z</i>-embedded
<i>C</i><sub>1</sub>-embedded
title An Upper Bound for the Weight of the Fine Uniformity
title_full An Upper Bound for the Weight of the Fine Uniformity
title_fullStr An Upper Bound for the Weight of the Fine Uniformity
title_full_unstemmed An Upper Bound for the Weight of the Fine Uniformity
title_short An Upper Bound for the Weight of the Fine Uniformity
title_sort upper bound for the weight of the fine uniformity
topic uniform spaces
uniform weight
fine uniformity
<i>Z</i>-embedded
<i>C</i><sub>1</sub>-embedded
url https://www.mdpi.com/2227-7390/13/15/2511
work_keys_str_mv AT johnnycuadro anupperboundfortheweightofthefineuniformity
AT margaritagary anupperboundfortheweightofthefineuniformity
AT adolfopimienta anupperboundfortheweightofthefineuniformity
AT johnnycuadro upperboundfortheweightofthefineuniformity
AT margaritagary upperboundfortheweightofthefineuniformity
AT adolfopimienta upperboundfortheweightofthefineuniformity