The Stability of Isometry by Singular Value Decomposition

Hyers and Ulam considered the problem of whether there is a true isometry that approximates the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula&...

Full description

Saved in:
Bibliographic Details
Main Authors: Soon-Mo Jung, Jaiok Roh
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/15/2500
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849405984014860288
author Soon-Mo Jung
Jaiok Roh
author_facet Soon-Mo Jung
Jaiok Roh
author_sort Soon-Mo Jung
collection DOAJ
description Hyers and Ulam considered the problem of whether there is a true isometry that approximates the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-isometry defined on a Hilbert space with a stability constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mi>ε</mi></mrow></semantics></math></inline-formula>. Subsequently, Fickett considered the same question on a bounded subset of the <i>n</i>-dimensional Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> with a stability constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>27</mn><msup><mi>ε</mi><mrow><mn>1</mn><mo>/</mo><msup><mn>2</mn><mi>n</mi></msup></mrow></msup></mrow></semantics></math></inline-formula>. And Vestfrid gave a stability constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>27</mn><mi>n</mi><mi>ε</mi></mrow></semantics></math></inline-formula> as the answer for bounded subsets. In this paper, by applying singular value decomposition, we improve the previous stability constants by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msqrt><mi>n</mi></msqrt><mi>ε</mi></mrow></semantics></math></inline-formula> for bounded subsets, where the constant <i>C</i> depends on the approximate linearity parameter <i>K</i>, which is defined later.
format Article
id doaj-art-9f07f272a3a948ffb49ccae4dbac3f93
institution Kabale University
issn 2227-7390
language English
publishDate 2025-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-9f07f272a3a948ffb49ccae4dbac3f932025-08-20T03:36:31ZengMDPI AGMathematics2227-73902025-08-011315250010.3390/math13152500The Stability of Isometry by Singular Value DecompositionSoon-Mo Jung0Jaiok Roh1Nano Convergence Technology Research Institute, School of Semiconductor & Display Technology, Hallym University, Chuncheon 24252, Republic of KoreaIlsong Liberal Art Schools (Mathematics), Hallym University, Chuncheon 24252, Republic of KoreaHyers and Ulam considered the problem of whether there is a true isometry that approximates the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-isometry defined on a Hilbert space with a stability constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mi>ε</mi></mrow></semantics></math></inline-formula>. Subsequently, Fickett considered the same question on a bounded subset of the <i>n</i>-dimensional Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> with a stability constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>27</mn><msup><mi>ε</mi><mrow><mn>1</mn><mo>/</mo><msup><mn>2</mn><mi>n</mi></msup></mrow></msup></mrow></semantics></math></inline-formula>. And Vestfrid gave a stability constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>27</mn><mi>n</mi><mi>ε</mi></mrow></semantics></math></inline-formula> as the answer for bounded subsets. In this paper, by applying singular value decomposition, we improve the previous stability constants by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msqrt><mi>n</mi></msqrt><mi>ε</mi></mrow></semantics></math></inline-formula> for bounded subsets, where the constant <i>C</i> depends on the approximate linearity parameter <i>K</i>, which is defined later.https://www.mdpi.com/2227-7390/13/15/2500stabilityisometryε-isometrybounded domainsingular value decomposition
spellingShingle Soon-Mo Jung
Jaiok Roh
The Stability of Isometry by Singular Value Decomposition
Mathematics
stability
isometry
ε-isometry
bounded domain
singular value decomposition
title The Stability of Isometry by Singular Value Decomposition
title_full The Stability of Isometry by Singular Value Decomposition
title_fullStr The Stability of Isometry by Singular Value Decomposition
title_full_unstemmed The Stability of Isometry by Singular Value Decomposition
title_short The Stability of Isometry by Singular Value Decomposition
title_sort stability of isometry by singular value decomposition
topic stability
isometry
ε-isometry
bounded domain
singular value decomposition
url https://www.mdpi.com/2227-7390/13/15/2500
work_keys_str_mv AT soonmojung thestabilityofisometrybysingularvaluedecomposition
AT jaiokroh thestabilityofisometrybysingularvaluedecomposition
AT soonmojung stabilityofisometrybysingularvaluedecomposition
AT jaiokroh stabilityofisometrybysingularvaluedecomposition