An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memories

We propose a novel hybrid mode interferometer (HMI) leveraging the interference of hybridized TE–TM modes in a silicon-on-insulator (SOI) waveguide integrated with a GeSe phase change material (PCM) layer. The SOI waveguide’s dimensions are optimized to support the hybridization of the fundamental t...

Full description

Saved in:
Bibliographic Details
Main Authors: Ranjeet Dwivedi, Fabio Pavanello, Regis Orobtchouk
Format: Article
Language:English
Published: AIP Publishing LLC 2025-04-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/5.0245618
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849723410599378944
author Ranjeet Dwivedi
Fabio Pavanello
Regis Orobtchouk
author_facet Ranjeet Dwivedi
Fabio Pavanello
Regis Orobtchouk
author_sort Ranjeet Dwivedi
collection DOAJ
description We propose a novel hybrid mode interferometer (HMI) leveraging the interference of hybridized TE–TM modes in a silicon-on-insulator (SOI) waveguide integrated with a GeSe phase change material (PCM) layer. The SOI waveguide’s dimensions are optimized to support the hybridization of the fundamental transverse magnetic (TM0) and the first higher transverse electric (TE1) mode. This design allows for efficient and nearly equal power coupling between these two modes, resulting in high-contrast interference when starting from the amorphous PCM state. The PCM’s phase transition induces a differential change in the modal effective index, enabling high-contrast transmittance modulation. Our numerical simulations demonstrate a multilevel transmission with a high contrast of nearly 14 dB when the amorphous region’s length is varied incrementally, enabling multi-bit storage. The transmittance is maximized in the fully crystalline state with an insertion loss below 0.1 dB. The HMI can also operate as a quasi-pure phase shifter when partially amorphized, making it suitable for Mach–Zehnder interferometers. These characteristics make the proposed device a promising candidate for applications in photonic memories and neuromorphic computing.
format Article
id doaj-art-9ecc09723fe34c0f95eefbe75550ff99
institution DOAJ
issn 2166-532X
language English
publishDate 2025-04-01
publisher AIP Publishing LLC
record_format Article
series APL Materials
spelling doaj-art-9ecc09723fe34c0f95eefbe75550ff992025-08-20T03:11:02ZengAIP Publishing LLCAPL Materials2166-532X2025-04-01134041123041123-910.1063/5.0245618An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memoriesRanjeet Dwivedi0Fabio Pavanello1Regis Orobtchouk2INSA Lyon, Ecole Centrale de Lyon, CNRS, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69621 Villeurbanne, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, CROMA, 38000 Grenoble, FranceINSA Lyon, Ecole Centrale de Lyon, CNRS, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69621 Villeurbanne, FranceWe propose a novel hybrid mode interferometer (HMI) leveraging the interference of hybridized TE–TM modes in a silicon-on-insulator (SOI) waveguide integrated with a GeSe phase change material (PCM) layer. The SOI waveguide’s dimensions are optimized to support the hybridization of the fundamental transverse magnetic (TM0) and the first higher transverse electric (TE1) mode. This design allows for efficient and nearly equal power coupling between these two modes, resulting in high-contrast interference when starting from the amorphous PCM state. The PCM’s phase transition induces a differential change in the modal effective index, enabling high-contrast transmittance modulation. Our numerical simulations demonstrate a multilevel transmission with a high contrast of nearly 14 dB when the amorphous region’s length is varied incrementally, enabling multi-bit storage. The transmittance is maximized in the fully crystalline state with an insertion loss below 0.1 dB. The HMI can also operate as a quasi-pure phase shifter when partially amorphized, making it suitable for Mach–Zehnder interferometers. These characteristics make the proposed device a promising candidate for applications in photonic memories and neuromorphic computing.http://dx.doi.org/10.1063/5.0245618
spellingShingle Ranjeet Dwivedi
Fabio Pavanello
Regis Orobtchouk
An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memories
APL Materials
title An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memories
title_full An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memories
title_fullStr An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memories
title_full_unstemmed An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memories
title_short An ultra-low-loss compact phase-change material-based hybrid-mode interferometer for photonic memories
title_sort ultra low loss compact phase change material based hybrid mode interferometer for photonic memories
url http://dx.doi.org/10.1063/5.0245618
work_keys_str_mv AT ranjeetdwivedi anultralowlosscompactphasechangematerialbasedhybridmodeinterferometerforphotonicmemories
AT fabiopavanello anultralowlosscompactphasechangematerialbasedhybridmodeinterferometerforphotonicmemories
AT regisorobtchouk anultralowlosscompactphasechangematerialbasedhybridmodeinterferometerforphotonicmemories
AT ranjeetdwivedi ultralowlosscompactphasechangematerialbasedhybridmodeinterferometerforphotonicmemories
AT fabiopavanello ultralowlosscompactphasechangematerialbasedhybridmodeinterferometerforphotonicmemories
AT regisorobtchouk ultralowlosscompactphasechangematerialbasedhybridmodeinterferometerforphotonicmemories