A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variation

IntroductionMotor imagery (MI)-based brain-computer interfaces (BCI) offers promising applications in rehabilitation. Traditional force-based MI-BCI paradigms generally require subjects to imagine constant force during static or dynamic state. It is challenging to meet the demands of dynamic interac...

Full description

Saved in:
Bibliographic Details
Main Authors: Ankai Ying, Jinwang Lv, Junchen Huang, Tian Wang, Peixin Si, Jiyu Zhang, Guokun Zuo, Jialin Xu
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-06-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2025.1591398/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849689195141922816
author Ankai Ying
Ankai Ying
Ankai Ying
Jinwang Lv
Jinwang Lv
Jinwang Lv
Junchen Huang
Junchen Huang
Junchen Huang
Tian Wang
Peixin Si
Peixin Si
Jiyu Zhang
Guokun Zuo
Guokun Zuo
Guokun Zuo
Guokun Zuo
Jialin Xu
Jialin Xu
Jialin Xu
Jialin Xu
author_facet Ankai Ying
Ankai Ying
Ankai Ying
Jinwang Lv
Jinwang Lv
Jinwang Lv
Junchen Huang
Junchen Huang
Junchen Huang
Tian Wang
Peixin Si
Peixin Si
Jiyu Zhang
Guokun Zuo
Guokun Zuo
Guokun Zuo
Guokun Zuo
Jialin Xu
Jialin Xu
Jialin Xu
Jialin Xu
author_sort Ankai Ying
collection DOAJ
description IntroductionMotor imagery (MI)-based brain-computer interfaces (BCI) offers promising applications in rehabilitation. Traditional force-based MI-BCI paradigms generally require subjects to imagine constant force during static or dynamic state. It is challenging to meet the demands of dynamic interaction with force intensity variation in MI-BCI systems.MethodsTo address this gap, we designed a novel MI paradigm inspired by daily life, where subjects imagined variations in force intensity during dynamic unilateral upper-limb movements. In a single trial, the subjects were required to complete one of three combinations of force intensity variations: large-to-small, large-to-medium, or medium-to-small. During the execution of this paradigm, electroencephalography (EEG) features exhibit dynamic coupling, with subtle variations in intensity, timing, frequency coverage, and spatial distribution, as the force intensity imagined by the subjects changed. To recognize these fine-grained features, we propose a feature fusion network with a spatial-temporal-enhanced strategy and an information reconstruction (FN-SSIR) algorithm. This model combines a multi-scale spatial-temporal convolution module with a spatial-temporal-enhanced strategy, a convolutional auto-encoder for information reconstruction, and a long short-term memory with self-attention, enabling the comprehensive extraction and fusion of EEG features across fine-grained time-frequency variations and dynamic spatial-temporal patterns.ResultsThe proposed FN-SSIR achieved a classification accuracy of 86.7% ± 6.6% on our force variation MI dataset, and 78.4% ± 13.0% on the BCI Competition IV 2a dataset.DiscussionThese findings highlight the potential of this paradigm and algorithm for advancing MI-BCI systems in rehabilitation training based on dynamic force interactions.
format Article
id doaj-art-9e4d21b8803447c095f1fe4d96cf6abd
institution DOAJ
issn 1662-453X
language English
publishDate 2025-06-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj-art-9e4d21b8803447c095f1fe4d96cf6abd2025-08-20T03:21:43ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2025-06-011910.3389/fnins.2025.15913981591398A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variationAnkai Ying0Ankai Ying1Ankai Ying2Jinwang Lv3Jinwang Lv4Jinwang Lv5Junchen Huang6Junchen Huang7Junchen Huang8Tian Wang9Peixin Si10Peixin Si11Jiyu Zhang12Guokun Zuo13Guokun Zuo14Guokun Zuo15Guokun Zuo16Jialin Xu17Jialin Xu18Jialin Xu19Jialin Xu20Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, ChinaNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, ChinaNingbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, ChinaCixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, ChinaNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, ChinaNingbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, ChinaCixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, ChinaNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, ChinaNingbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, ChinaHangzhou RoboCT Technology Development Co., Ltd., Hangzhou, ChinaNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, ChinaNingbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, ChinaHangzhou RoboCT Technology Development Co., Ltd., Hangzhou, ChinaCixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, ChinaNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, ChinaNingbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, ChinaNingbo College of Materials Engineering, University of Chinese Academy of Sciences, Beijing, ChinaCixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, ChinaNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, ChinaNingbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, ChinaNingbo College of Materials Engineering, University of Chinese Academy of Sciences, Beijing, ChinaIntroductionMotor imagery (MI)-based brain-computer interfaces (BCI) offers promising applications in rehabilitation. Traditional force-based MI-BCI paradigms generally require subjects to imagine constant force during static or dynamic state. It is challenging to meet the demands of dynamic interaction with force intensity variation in MI-BCI systems.MethodsTo address this gap, we designed a novel MI paradigm inspired by daily life, where subjects imagined variations in force intensity during dynamic unilateral upper-limb movements. In a single trial, the subjects were required to complete one of three combinations of force intensity variations: large-to-small, large-to-medium, or medium-to-small. During the execution of this paradigm, electroencephalography (EEG) features exhibit dynamic coupling, with subtle variations in intensity, timing, frequency coverage, and spatial distribution, as the force intensity imagined by the subjects changed. To recognize these fine-grained features, we propose a feature fusion network with a spatial-temporal-enhanced strategy and an information reconstruction (FN-SSIR) algorithm. This model combines a multi-scale spatial-temporal convolution module with a spatial-temporal-enhanced strategy, a convolutional auto-encoder for information reconstruction, and a long short-term memory with self-attention, enabling the comprehensive extraction and fusion of EEG features across fine-grained time-frequency variations and dynamic spatial-temporal patterns.ResultsThe proposed FN-SSIR achieved a classification accuracy of 86.7% ± 6.6% on our force variation MI dataset, and 78.4% ± 13.0% on the BCI Competition IV 2a dataset.DiscussionThese findings highlight the potential of this paradigm and algorithm for advancing MI-BCI systems in rehabilitation training based on dynamic force interactions.https://www.frontiersin.org/articles/10.3389/fnins.2025.1591398/fullbrain-computer interfacesforce intensity variationspatial-temporal-enhanced strategymotor imagerydeep learning
spellingShingle Ankai Ying
Ankai Ying
Ankai Ying
Jinwang Lv
Jinwang Lv
Jinwang Lv
Junchen Huang
Junchen Huang
Junchen Huang
Tian Wang
Peixin Si
Peixin Si
Jiyu Zhang
Guokun Zuo
Guokun Zuo
Guokun Zuo
Guokun Zuo
Jialin Xu
Jialin Xu
Jialin Xu
Jialin Xu
A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variation
Frontiers in Neuroscience
brain-computer interfaces
force intensity variation
spatial-temporal-enhanced strategy
motor imagery
deep learning
title A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variation
title_full A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variation
title_fullStr A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variation
title_full_unstemmed A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variation
title_short A feature fusion network with spatial-temporal-enhanced strategy for the motor imagery of force intensity variation
title_sort feature fusion network with spatial temporal enhanced strategy for the motor imagery of force intensity variation
topic brain-computer interfaces
force intensity variation
spatial-temporal-enhanced strategy
motor imagery
deep learning
url https://www.frontiersin.org/articles/10.3389/fnins.2025.1591398/full
work_keys_str_mv AT ankaiying afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT ankaiying afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT ankaiying afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jinwanglv afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jinwanglv afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jinwanglv afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT junchenhuang afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT junchenhuang afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT junchenhuang afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT tianwang afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT peixinsi afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT peixinsi afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jiyuzhang afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu afeaturefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT ankaiying featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT ankaiying featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT ankaiying featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jinwanglv featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jinwanglv featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jinwanglv featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT junchenhuang featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT junchenhuang featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT junchenhuang featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT tianwang featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT peixinsi featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT peixinsi featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jiyuzhang featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT guokunzuo featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation
AT jialinxu featurefusionnetworkwithspatialtemporalenhancedstrategyforthemotorimageryofforceintensityvariation