Prediction of PD-L1 and CD68 in Clear Cell Renal Cell Carcinoma with Green Learning

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer. Extensive efforts have been made to utilize radiomics from computed tomography (CT) imaging to predict tumor immune microenvironment (TIME) measurements. This study proposes a Green Learning (GL) framework for approxima...

Full description

Saved in:
Bibliographic Details
Main Authors: Yixing Wu, Alexander Shieh, Steven Cen, Darryl Hwang, Xiaomeng Lei, S. J. Pawan, Manju Aron, Inderbir Gill, William D. Wallace, C.-C. Jay Kuo, Vinay Duddalwar
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/6/191
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer. Extensive efforts have been made to utilize radiomics from computed tomography (CT) imaging to predict tumor immune microenvironment (TIME) measurements. This study proposes a Green Learning (GL) framework for approximating tissue-based biomarkers from CT scans, focusing on the PD-L1 expression and CD68 tumor-associated macrophages (TAMs) in ccRCC. Our approach includes radiomic feature extraction, redundancy removal, and supervised feature selection through a discriminant feature test (DFT), a relevant feature test (RFT), and least-squares normal transform (LNT) for robust feature generation. For the PD-L1 expression in 52 ccRCC patients, treated as a regression problem, our GL model achieved a 5-fold cross-validated mean squared error (MSE) of 0.0041 and a Mean Absolute Error (MAE) of 0.0346. For the TAM population (CD68+/PanCK+), analyzed in 78 ccRCC patients as a binary classification task (at a 0.4 threshold), the model reached a 10-fold cross-validated Area Under the Receiver Operating Characteristic (AUROC) of 0.85 (95% CI [0.76, 0.93]) using 10 LNT-derived features, improving upon the previous benchmark of 0.81. This study demonstrates the potential of GL in radiomic analyses, offering a scalable, efficient, and interpretable framework for the non-invasive approximation of key biomarkers.
ISSN:2313-433X