A Comprehensive Analysis of Supervised Learning Techniques for Electricity Theft Detection

There are many methods or algorithms applicable for detecting electricity theft. However, comparative studies on supervised learning methods for electricity theft detection are still insufficient. In this paper, comparisons based on predictive accuracy, recall, precision, AUC, and F1-score of severa...

Full description

Saved in:
Bibliographic Details
Main Authors: Farah Aqilah Bohani, Azizah Suliman, Mulyana Saripuddin, Sera Syarmila Sameon, Nur Shakirah Md Salleh, Surizal Nazeri
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2021/9136206
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There are many methods or algorithms applicable for detecting electricity theft. However, comparative studies on supervised learning methods for electricity theft detection are still insufficient. In this paper, comparisons based on predictive accuracy, recall, precision, AUC, and F1-score of several supervised learning methods such as decision tree (DT), artificial neural network (ANN), deep artificial neural network (DANN), and AdaBoost are presented and their performances are analyzed. A public dataset from the State Grid Corporation of China (SGCC) was used for this study. The dataset consisted of power consumption in kWh unit. Based on the analysis results, the DANN outperforms compared to other supervised learning classifiers such as ANN, AdaBoost, and DT in recall, F1-Score, and AUC. A future research direction is the experiments can be performed on other supervised learning algorithms with different types of datasets and suitable preprocessing methods can be applied to produce better performance.
ISSN:2090-0147
2090-0155