YOLO-Ssboat: Super-Small Ship Detection Network for Large-Scale Aerial and Remote Sensing Scenes

Enhancing the detection capabilities of marine vessels is crucial for maritime security and intelligence acquisition. However, accurately identifying small ships in complex oceanic environments remains a significant challenge, as these targets are frequently obscured by ocean waves and other disturb...

Full description

Saved in:
Bibliographic Details
Main Authors: Yiliang Zeng, Xiuhong Wang, Jinlin Zou, Hongtao Wu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/11/1948
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enhancing the detection capabilities of marine vessels is crucial for maritime security and intelligence acquisition. However, accurately identifying small ships in complex oceanic environments remains a significant challenge, as these targets are frequently obscured by ocean waves and other disturbances, compromising recognition accuracy and stability. To address this issue, we propose YOLO-ssboat, a novel small-target ship recognition algorithm based on the YOLOv8 framework. YOLO-ssboat integrates the C2f_DCNv3 module to extract fine-grained features of small vessels while mitigating background interference and preserving critical target details. Additionally, it employs a high-resolution feature layer and incorporates a Multi-Scale Weighted Pyramid Network (MSWPN) to enhance feature diversity. The algorithm further leverages an improved multi-attention detection head, Dyhead_v3, to refine the representation of small-target features. To tackle the challenge of wake waves from moving ships obscuring small targets, we introduce a gradient flow mechanism that improves detection efficiency under dynamic conditions. The Tail Wave Detection Method synergistically integrates gradient computation with target detection techniques. Furthermore, adversarial training enhances the network’s robustness and ensures greater stability. Experimental evaluations on the Ship_detection and Vessel datasets demonstrate that YOLO-ssboat outperforms state-of-the-art detection algorithms in both accuracy and stability. Notably, the gradient flow mechanism enriches target feature extraction for moving vessels, thereby improving detection accuracy in wake-disturbed scenarios, while adversarial training further fortifies model resilience. These advancements offer significant implications for the long-range monitoring and detection of maritime vessels, contributing to enhanced situational awareness in expansive oceanic environments.
ISSN:2072-4292