Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>

The Kohn–Nirenberg domains are unbounded domains in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>. In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Kejia Hu, Hongyi Li, Di Zhao, Yuan Jiang, Baozhu Li
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/7/1200
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850184576777846784
author Kejia Hu
Hongyi Li
Di Zhao
Yuan Jiang
Baozhu Li
author_facet Kejia Hu
Hongyi Li
Di Zhao
Yuan Jiang
Baozhu Li
author_sort Kejia Hu
collection DOAJ
description The Kohn–Nirenberg domains are unbounded domains in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>. In this article, we modify the Kohn–Nirenberg domain <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">Ω</mi><mrow><mi>K</mi><mo>,</mo><mi>L</mi></mrow></msub><mo>=</mo><mfenced separators="" open="{" close=""><mo stretchy="false">(</mo><msub><mi>z</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mfenced><mo>∈</mo><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup><mo>:</mo><mi>R</mi><mi>e</mi><msub><mi>z</mi><mi>n</mi></msub><mo>+</mo><mi>g</mi><mo>∣</mo><msub><mi>z</mi><mi>n</mi></msub><msup><mo>∣</mo><mn>2</mn></msup><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo stretchy="false">(</mo><mo>∣</mo><msub><mi>z</mi><mi>j</mi></msub><msup><mo>∣</mo><mi>p</mi></msup><mo>+</mo><msub><mi>K</mi><mi>j</mi></msub><mo>∣</mo><msub><mi>z</mi><mi>j</mi></msub><msup><mo>∣</mo><mrow><mi>p</mi><mo>−</mo><mi>q</mi></mrow></msup><mi>R</mi><mi>e</mi><msubsup><mi>z</mi><mrow><mi>j</mi></mrow><mi>q</mi></msubsup><mo>+</mo><msub><mi>L</mi><mi>j</mi></msub><mo>∣</mo><msub><mi>z</mi><mi>j</mi></msub><msup><mo>∣</mo><mrow><mi>p</mi><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><mi>I</mi><mi>m</mi><msubsup><mi>z</mi><mrow><mi>j</mi></mrow><mrow><mn>2</mn><mi>q</mi></mrow></msubsup><mo stretchy="false">)</mo></mrow><mrow><mo><</mo><mn>0</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and discuss the existence of supporting surface and peak functions at the origin.
format Article
id doaj-art-9e082c57ec724b9e9865a5adbc91525f
institution OA Journals
issn 2227-7390
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-9e082c57ec724b9e9865a5adbc91525f2025-08-20T02:17:00ZengMDPI AGMathematics2227-73902025-04-01137120010.3390/math13071200Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>Kejia Hu0Hongyi Li1Di Zhao2Yuan Jiang3Baozhu Li4School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen 518107, ChinaSchool of Mathematical Science, Beihang University, Beijing 100191, ChinaSchool of Mathematical Science, Beihang University, Beijing 100191, ChinaSchool of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen 518107, ChinaHangzhou Institute of Technology, Xidian University, Hangzhou 311200, ChinaThe Kohn–Nirenberg domains are unbounded domains in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>. In this article, we modify the Kohn–Nirenberg domain <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="normal">Ω</mi><mrow><mi>K</mi><mo>,</mo><mi>L</mi></mrow></msub><mo>=</mo><mfenced separators="" open="{" close=""><mo stretchy="false">(</mo><msub><mi>z</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mfenced><mo>∈</mo><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup><mo>:</mo><mi>R</mi><mi>e</mi><msub><mi>z</mi><mi>n</mi></msub><mo>+</mo><mi>g</mi><mo>∣</mo><msub><mi>z</mi><mi>n</mi></msub><msup><mo>∣</mo><mn>2</mn></msup><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo stretchy="false">(</mo><mo>∣</mo><msub><mi>z</mi><mi>j</mi></msub><msup><mo>∣</mo><mi>p</mi></msup><mo>+</mo><msub><mi>K</mi><mi>j</mi></msub><mo>∣</mo><msub><mi>z</mi><mi>j</mi></msub><msup><mo>∣</mo><mrow><mi>p</mi><mo>−</mo><mi>q</mi></mrow></msup><mi>R</mi><mi>e</mi><msubsup><mi>z</mi><mrow><mi>j</mi></mrow><mi>q</mi></msubsup><mo>+</mo><msub><mi>L</mi><mi>j</mi></msub><mo>∣</mo><msub><mi>z</mi><mi>j</mi></msub><msup><mo>∣</mo><mrow><mi>p</mi><mo>−</mo><mn>2</mn><mi>q</mi></mrow></msup><mi>I</mi><mi>m</mi><msubsup><mi>z</mi><mrow><mi>j</mi></mrow><mrow><mn>2</mn><mi>q</mi></mrow></msubsup><mo stretchy="false">)</mo></mrow><mrow><mo><</mo><mn>0</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula> and discuss the existence of supporting surface and peak functions at the origin.https://www.mdpi.com/2227-7390/13/7/1200Kohn–Nirenberg domainpeak functionsupporting surface
spellingShingle Kejia Hu
Hongyi Li
Di Zhao
Yuan Jiang
Baozhu Li
Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>
Mathematics
Kohn–Nirenberg domain
peak function
supporting surface
title Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>
title_full Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>
title_fullStr Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>
title_full_unstemmed Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>
title_short Geometric Properties of a General Kohn–Nirenberg Domain in ℂ<i><sup>n</sup></i>
title_sort geometric properties of a general kohn nirenberg domain in c i sup n sup i
topic Kohn–Nirenberg domain
peak function
supporting surface
url https://www.mdpi.com/2227-7390/13/7/1200
work_keys_str_mv AT kejiahu geometricpropertiesofageneralkohnnirenbergdomainincisupnsupi
AT hongyili geometricpropertiesofageneralkohnnirenbergdomainincisupnsupi
AT dizhao geometricpropertiesofageneralkohnnirenbergdomainincisupnsupi
AT yuanjiang geometricpropertiesofageneralkohnnirenbergdomainincisupnsupi
AT baozhuli geometricpropertiesofageneralkohnnirenbergdomainincisupnsupi