Quadratic Boost DC–DC Converters Capable of Being Extended to Improved Topologies
Luo converters represent the most extensive family of non-isolated DC-DC converters, yet achieving high voltage gain in these topologies often compromises simplicity. This study introduces a novel family of quadratic boost converters that address this challenge by combining six key features: 1) cont...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11082133/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850078740132921344 |
|---|---|
| author | Mohammadfazel Dehghan Hossein Gholizadeh Reza Sharifi Shahrivar Saeed Amini Hani Vahedi |
| author_facet | Mohammadfazel Dehghan Hossein Gholizadeh Reza Sharifi Shahrivar Saeed Amini Hani Vahedi |
| author_sort | Mohammadfazel Dehghan |
| collection | DOAJ |
| description | Luo converters represent the most extensive family of non-isolated DC-DC converters, yet achieving high voltage gain in these topologies often compromises simplicity. This study introduces a novel family of quadratic boost converters that address this challenge by combining six key features: 1) continuous input current, 2) reduced component count, 3) optimized voltage/current stress on semiconductors, 4) higher voltage gain than conventional designs, 5) high efficiency across a wide duty-cycle range, and 6) topological extensibility comparable to Luo converters. The proposed topologies are analyzed in both ideal and non-ideal operating modes, with derived expressions for voltage gain and efficiency sensitivity. Design requirements are detailed for continuous conduction mode (CCM), complemented by small-signal analysis and compensator design for the primary family members. Experimental results validate the theoretical models, demonstrating the converters’ performance and robustness. Additionally, voltage gain tests for extended topologies confirm their adherence to theoretical predictions. The proposed family offers a streamlined, high-performance alternative to existing Luo converters, with potential applications in high-gain, non-isolated power conversion systems. |
| format | Article |
| id | doaj-art-9da847febcc841b392714f9aafbbdbd2 |
| institution | DOAJ |
| issn | 2169-3536 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | IEEE |
| record_format | Article |
| series | IEEE Access |
| spelling | doaj-art-9da847febcc841b392714f9aafbbdbd22025-08-20T02:45:28ZengIEEEIEEE Access2169-35362025-01-011312976012978610.1109/ACCESS.2025.358964111082133Quadratic Boost DC–DC Converters Capable of Being Extended to Improved TopologiesMohammadfazel Dehghan0Hossein Gholizadeh1https://orcid.org/0000-0001-6485-3465Reza Sharifi Shahrivar2Saeed Amini3Hani Vahedi4https://orcid.org/0000-0001-6309-2633Independent Researcher, Tehran, IranIndependent Researcher, Tehran, IranIndependent Researcher, Tehran, IranIndependent Researcher, Tehran, IranDepartment of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, The NetherlandsLuo converters represent the most extensive family of non-isolated DC-DC converters, yet achieving high voltage gain in these topologies often compromises simplicity. This study introduces a novel family of quadratic boost converters that address this challenge by combining six key features: 1) continuous input current, 2) reduced component count, 3) optimized voltage/current stress on semiconductors, 4) higher voltage gain than conventional designs, 5) high efficiency across a wide duty-cycle range, and 6) topological extensibility comparable to Luo converters. The proposed topologies are analyzed in both ideal and non-ideal operating modes, with derived expressions for voltage gain and efficiency sensitivity. Design requirements are detailed for continuous conduction mode (CCM), complemented by small-signal analysis and compensator design for the primary family members. Experimental results validate the theoretical models, demonstrating the converters’ performance and robustness. Additionally, voltage gain tests for extended topologies confirm their adherence to theoretical predictions. The proposed family offers a streamlined, high-performance alternative to existing Luo converters, with potential applications in high-gain, non-isolated power conversion systems.https://ieeexplore.ieee.org/document/11082133/Boost converterfamily convertershigh-gain convertersnon-isolated convertersquadratic boost converters |
| spellingShingle | Mohammadfazel Dehghan Hossein Gholizadeh Reza Sharifi Shahrivar Saeed Amini Hani Vahedi Quadratic Boost DC–DC Converters Capable of Being Extended to Improved Topologies IEEE Access Boost converter family converters high-gain converters non-isolated converters quadratic boost converters |
| title | Quadratic Boost DC–DC Converters Capable of Being Extended to Improved Topologies |
| title_full | Quadratic Boost DC–DC Converters Capable of Being Extended to Improved Topologies |
| title_fullStr | Quadratic Boost DC–DC Converters Capable of Being Extended to Improved Topologies |
| title_full_unstemmed | Quadratic Boost DC–DC Converters Capable of Being Extended to Improved Topologies |
| title_short | Quadratic Boost DC–DC Converters Capable of Being Extended to Improved Topologies |
| title_sort | quadratic boost dc x2013 dc converters capable of being extended to improved topologies |
| topic | Boost converter family converters high-gain converters non-isolated converters quadratic boost converters |
| url | https://ieeexplore.ieee.org/document/11082133/ |
| work_keys_str_mv | AT mohammadfazeldehghan quadraticboostdcx2013dcconverterscapableofbeingextendedtoimprovedtopologies AT hosseingholizadeh quadraticboostdcx2013dcconverterscapableofbeingextendedtoimprovedtopologies AT rezasharifishahrivar quadraticboostdcx2013dcconverterscapableofbeingextendedtoimprovedtopologies AT saeedamini quadraticboostdcx2013dcconverterscapableofbeingextendedtoimprovedtopologies AT hanivahedi quadraticboostdcx2013dcconverterscapableofbeingextendedtoimprovedtopologies |