Information system for assessing the informativeness of an epidemic process features

The primary objective of this study is to assess the informativeness of various parameters influencing epidemic processes utilizing the Shannon and Kullback–Leibler methods. These methods were selected based on their foundation in the principles of information theory and their extensive application...

Full description

Saved in:
Bibliographic Details
Main Authors: Ксенія Базілевич, Олена Кіріленко, Юрій Парфенюк, Сергій Яковлев, Сергій Кривцов, Євген Меняйлов, Вікторія Кузнєцова, Дмитро Чумаченко
Format: Article
Language:Ukrainian
Published: Igor Sikorsky Kyiv Polytechnic Institute 2023-12-01
Series:Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï
Subjects:
Online Access:http://journal.iasa.kpi.ua/article/view/297411
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846114461705830400
author Ксенія Базілевич
Олена Кіріленко
Юрій Парфенюк
Сергій Яковлев
Сергій Кривцов
Євген Меняйлов
Вікторія Кузнєцова
Дмитро Чумаченко
author_facet Ксенія Базілевич
Олена Кіріленко
Юрій Парфенюк
Сергій Яковлев
Сергій Кривцов
Євген Меняйлов
Вікторія Кузнєцова
Дмитро Чумаченко
author_sort Ксенія Базілевич
collection DOAJ
description The primary objective of this study is to assess the informativeness of various parameters influencing epidemic processes utilizing the Shannon and Kullback–Leibler methods. These methods were selected based on their foundation in the principles of information theory and their extensive application in machine learning, statistics, and other relevant domains. A comparative analysis was performed between the results acquired from both methods, and an information system was designed to facilitate the uploading of data samples and the calculation of factor informativeness impacting the epidemic processes. The findings revealed that certain features, such as “Chronic lung disease,” “Chronic kidney disease,” and “Weakened immunity,” did not carry significant information for further analysis and hindered the forecasting process, as per the data set examined. The developed information system efficiently supports the assessment of feature informativeness, thereby aiding in the comprehensive analysis of epidemic processes and enabling the visualization of the results. This study contributes to the current body of knowledge by providing specific examples of applying the described algorithmic models, comparing various methods and their outcomes, and developing a supportive tool for analyzing epidemic processes.
format Article
id doaj-art-9da6a69f8d1e4de294d2e7a4213b998b
institution Kabale University
issn 1681-6048
2308-8893
language Ukrainian
publishDate 2023-12-01
publisher Igor Sikorsky Kyiv Polytechnic Institute
record_format Article
series Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï
spelling doaj-art-9da6a69f8d1e4de294d2e7a4213b998b2024-12-20T12:28:57ZukrIgor Sikorsky Kyiv Polytechnic InstituteSistemnì Doslìdženâ ta Informacìjnì Tehnologìï1681-60482308-88932023-12-01410011210.20535/SRIT.2308-8893.2023.4.08335752Information system for assessing the informativeness of an epidemic process featuresКсенія Базілевич0https://orcid.org/0000-0001-5332-9545Олена Кіріленко1https://orcid.org/0009-0005-8917-0878Юрій Парфенюк2https://orcid.org/0000-0001-5357-1868Сергій Яковлев3https://orcid.org/0000-0003-1707-843XСергій Кривцов4https://orcid.org/0000-0001-5214-0927Євген Меняйлов5https://orcid.org/0000-0002-9440-8378Вікторія Кузнєцова6https://orcid.org/0000-0003-3882-1333Дмитро Чумаченко7https://orcid.org/0000-0003-2623-3294National Aerospace University “Kharkiv Aviation Institute”, KharkivNational Aerospace University “Kharkiv Aviation Institute”, KharkivV. N. Karazin Kharkiv National University, KharkivNational Aerospace University “Kharkiv Aviation Institute”, KharkivNational Aerospace University “Kharkiv Aviation Institute”, KharkivV. N. Karazin Kharkiv National University, KharkivV. N. Karazin Kharkiv National University, KharkivNational Aerospace University “Kharkiv Aviation Institute”, KharkivThe primary objective of this study is to assess the informativeness of various parameters influencing epidemic processes utilizing the Shannon and Kullback–Leibler methods. These methods were selected based on their foundation in the principles of information theory and their extensive application in machine learning, statistics, and other relevant domains. A comparative analysis was performed between the results acquired from both methods, and an information system was designed to facilitate the uploading of data samples and the calculation of factor informativeness impacting the epidemic processes. The findings revealed that certain features, such as “Chronic lung disease,” “Chronic kidney disease,” and “Weakened immunity,” did not carry significant information for further analysis and hindered the forecasting process, as per the data set examined. The developed information system efficiently supports the assessment of feature informativeness, thereby aiding in the comprehensive analysis of epidemic processes and enabling the visualization of the results. This study contributes to the current body of knowledge by providing specific examples of applying the described algorithmic models, comparing various methods and their outcomes, and developing a supportive tool for analyzing epidemic processes.http://journal.iasa.kpi.ua/article/view/297411information systemepidemic processinformativeness of featuresshannon methodkullback–leibler method
spellingShingle Ксенія Базілевич
Олена Кіріленко
Юрій Парфенюк
Сергій Яковлев
Сергій Кривцов
Євген Меняйлов
Вікторія Кузнєцова
Дмитро Чумаченко
Information system for assessing the informativeness of an epidemic process features
Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï
information system
epidemic process
informativeness of features
shannon method
kullback–leibler method
title Information system for assessing the informativeness of an epidemic process features
title_full Information system for assessing the informativeness of an epidemic process features
title_fullStr Information system for assessing the informativeness of an epidemic process features
title_full_unstemmed Information system for assessing the informativeness of an epidemic process features
title_short Information system for assessing the informativeness of an epidemic process features
title_sort information system for assessing the informativeness of an epidemic process features
topic information system
epidemic process
informativeness of features
shannon method
kullback–leibler method
url http://journal.iasa.kpi.ua/article/view/297411
work_keys_str_mv AT kseníâbazílevič informationsystemforassessingtheinformativenessofanepidemicprocessfeatures
AT olenakírílenko informationsystemforassessingtheinformativenessofanepidemicprocessfeatures
AT ûríjparfenûk informationsystemforassessingtheinformativenessofanepidemicprocessfeatures
AT sergíjâkovlev informationsystemforassessingtheinformativenessofanepidemicprocessfeatures
AT sergíjkrivcov informationsystemforassessingtheinformativenessofanepidemicprocessfeatures
AT êvgenmenâjlov informationsystemforassessingtheinformativenessofanepidemicprocessfeatures
AT víktoríâkuznêcova informationsystemforassessingtheinformativenessofanepidemicprocessfeatures
AT dmitročumačenko informationsystemforassessingtheinformativenessofanepidemicprocessfeatures