A Hardware Design of Neuromolecular Network with Enhanced Evolvability: A Bioinspired Approach
Silicon-based computer systems have powerful computational capability. However, they are easy to malfunction because of a slight program error. Organisms have better adaptability than computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in bio...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Journal of Electrical and Computer Engineering |
| Online Access: | http://dx.doi.org/10.1155/2012/278735 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Silicon-based computer systems have powerful computational capability. However, they are easy to malfunction because of a slight program error. Organisms have better adaptability than computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. An evolvable neuromolecular hardware motivated by some biological evidence, which integrates inter- and intraneuronal information processing, was proposed. The hardware was further applied to the pattern-recognition domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise. |
|---|---|
| ISSN: | 2090-0147 2090-0155 |