MAN-GAN: a mask-adaptive normalization based generative adversarial networks for liver multi-phase CT image generation

Abstract Liver multiphase enhanced computed tomography (MPECT) is vital in clinical practice, but its utility is limited by various factors. We aimed to develop a deep learning network capable of automatically generating MPECT images from standard non-contrast CT scans. Dataset 1 included 374 patien...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Zhao, Wenting Chen, Li Fan, Youlan Shang, Yisong Wang, Weijun Situ, Wenzheng Li, Tianming Liu, Yixuan Yuan, Jun Liu
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-10754-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Liver multiphase enhanced computed tomography (MPECT) is vital in clinical practice, but its utility is limited by various factors. We aimed to develop a deep learning network capable of automatically generating MPECT images from standard non-contrast CT scans. Dataset 1 included 374 patients and was divided into three parts: a training set, a validation set and a test set. Dataset 2 included 144 patients with one specific liver disease and was used as an internal test dataset. We further collected another dataset comprising 83 patients for external validation. Then, we propose a Mask-Adaptive Normalization-based Generative Adversarial Network with Cycle-Consistency Loss (MAN-GAN) to achieve non-contrast CT to MPECT translation. To assess the efficiency of MAN-GAN, we conducted a comparative analysis with state-of-the-art methods commonly employed in diverse medical image synthesis tasks. Moreover, two subjective radiologist evaluation studies were performed to verify the clinical usefulness of the generated images. MAN-GAN outperformed the baseline network and other state-of-the-art methods in all generations of the three phases. These results were verified in internal and external datasets. According to radiological evaluation, the image quality of generated three phase images are all above average. Moreover, the similarities between real images and generated images in all three phases are satisfactory. MAN-GAN demonstrates the feasibility of liver MPECT image translation based on non-contrast images and achieves state-of-the-art performance via the subtraction strategy. It has great potential for solving the dilemma of liver CT contrast canning and aiding further liver interaction clinical scenarios.
ISSN:2045-2322