Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolution
The spatial dynamics of cations have a significant impact on the photodynamic behavior of excited states in high-performance hybrid organic-inorganic perovskites. Multinuclear (1H, 2H, and 14N) solid-state NMR (SSNMR) spectroscopy has traditionally been utilized to study the motion of methylammonium...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Journal of Magnetic Resonance Open |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666441025000135 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849724669283794944 |
|---|---|
| author | Yue Dou Qing Wang Hengxing Ji Haiming Liu |
| author_facet | Yue Dou Qing Wang Hengxing Ji Haiming Liu |
| author_sort | Yue Dou |
| collection | DOAJ |
| description | The spatial dynamics of cations have a significant impact on the photodynamic behavior of excited states in high-performance hybrid organic-inorganic perovskites. Multinuclear (1H, 2H, and 14N) solid-state NMR (SSNMR) spectroscopy has traditionally been utilized to study the motion of methylammonium (MA) cations in methylammonium lead (II) halides MAPbX3 (X = I, Br, Cl). NMR methods based on spin-lattice relaxation or quadrupolar line shape analysis over a limited temperature range demonstrate rapid MA reorientation, but the cation dynamics in a wider temperature range covering phase transition of all major crystallographic phases is lacking. Due to its low sensitivity, 13C NMR is rarely used to assess MA dynamics in these perovskites. Herein, we adopte variable-temperature (VT) 13C MAS NMR at very high resolution and dipolar-coupled transverse relaxation analysis as a new tool for dynamical characterization without isotopic enrichment, and systematically investigated MA dynamics in MAPbX3 across phase transitions. This new approach enables retrieval of activation energy of MA reorientation and assessment of motion regimes. We propose a generalized “Camel model” that describes the common trend of cation dynamics for MAPbX3, suggesting possible complicated reorientation modes. Furthermore, we discover the evolution of multiple MA sites in orthorhombic MAPbCl3, consistent with X-ray crystallography, demonstrating its unique advantage in resolving and characterizing multi-cation dynamics. The VT 13C SSNMR effectively probes organic ion motions and phase transitions in hybrid perovskites, helpful for further elucidating the structure-property relationship in photovoltaic conversion mechanisms. |
| format | Article |
| id | doaj-art-9cd5f09fcd744fd197fd5c34fc99d924 |
| institution | DOAJ |
| issn | 2666-4410 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Journal of Magnetic Resonance Open |
| spelling | doaj-art-9cd5f09fcd744fd197fd5c34fc99d9242025-08-20T03:10:41ZengElsevierJournal of Magnetic Resonance Open2666-44102025-06-012310019710.1016/j.jmro.2025.100197Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolutionYue Dou0Qing Wang1Hengxing Ji2Haiming Liu3Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, ChinaSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, ChinaHefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China; Corresponding authors.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Corresponding authors.The spatial dynamics of cations have a significant impact on the photodynamic behavior of excited states in high-performance hybrid organic-inorganic perovskites. Multinuclear (1H, 2H, and 14N) solid-state NMR (SSNMR) spectroscopy has traditionally been utilized to study the motion of methylammonium (MA) cations in methylammonium lead (II) halides MAPbX3 (X = I, Br, Cl). NMR methods based on spin-lattice relaxation or quadrupolar line shape analysis over a limited temperature range demonstrate rapid MA reorientation, but the cation dynamics in a wider temperature range covering phase transition of all major crystallographic phases is lacking. Due to its low sensitivity, 13C NMR is rarely used to assess MA dynamics in these perovskites. Herein, we adopte variable-temperature (VT) 13C MAS NMR at very high resolution and dipolar-coupled transverse relaxation analysis as a new tool for dynamical characterization without isotopic enrichment, and systematically investigated MA dynamics in MAPbX3 across phase transitions. This new approach enables retrieval of activation energy of MA reorientation and assessment of motion regimes. We propose a generalized “Camel model” that describes the common trend of cation dynamics for MAPbX3, suggesting possible complicated reorientation modes. Furthermore, we discover the evolution of multiple MA sites in orthorhombic MAPbCl3, consistent with X-ray crystallography, demonstrating its unique advantage in resolving and characterizing multi-cation dynamics. The VT 13C SSNMR effectively probes organic ion motions and phase transitions in hybrid perovskites, helpful for further elucidating the structure-property relationship in photovoltaic conversion mechanisms.http://www.sciencedirect.com/science/article/pii/S2666441025000135Hybrid organic-inorganic perovskitesCation dynamicsHigh-resolution SSNMRDipolar-coupled transverse relaxation analysis |
| spellingShingle | Yue Dou Qing Wang Hengxing Ji Haiming Liu Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolution Journal of Magnetic Resonance Open Hybrid organic-inorganic perovskites Cation dynamics High-resolution SSNMR Dipolar-coupled transverse relaxation analysis |
| title | Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolution |
| title_full | Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolution |
| title_fullStr | Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolution |
| title_full_unstemmed | Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolution |
| title_short | Probing cation dynamics and phase transition in hybrid organic-inorganic perovskites by 13C solid-state NMR spectroscopy at very high resolution |
| title_sort | probing cation dynamics and phase transition in hybrid organic inorganic perovskites by 13c solid state nmr spectroscopy at very high resolution |
| topic | Hybrid organic-inorganic perovskites Cation dynamics High-resolution SSNMR Dipolar-coupled transverse relaxation analysis |
| url | http://www.sciencedirect.com/science/article/pii/S2666441025000135 |
| work_keys_str_mv | AT yuedou probingcationdynamicsandphasetransitioninhybridorganicinorganicperovskitesby13csolidstatenmrspectroscopyatveryhighresolution AT qingwang probingcationdynamicsandphasetransitioninhybridorganicinorganicperovskitesby13csolidstatenmrspectroscopyatveryhighresolution AT hengxingji probingcationdynamicsandphasetransitioninhybridorganicinorganicperovskitesby13csolidstatenmrspectroscopyatveryhighresolution AT haimingliu probingcationdynamicsandphasetransitioninhybridorganicinorganicperovskitesby13csolidstatenmrspectroscopyatveryhighresolution |