Structural Studies of the Epitaxial Layer of a Substitutional Solid Solution (GaAs)1−x(ZnSe)x with Nanocrystals
In this work, we explored the possibility of growing a substitutional solid solution (GaAs)1−x(ZnSe)x with an ordered array of nanosize crystals on GaAs (100) substrates. Grown epitaxial films were investigated by the X-ray diffraction analysis method. The chemical composition of the grown epitaxial...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2019-01-01
|
| Series: | Advances in Materials Science and Engineering |
| Online Access: | http://dx.doi.org/10.1155/2019/3932195 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this work, we explored the possibility of growing a substitutional solid solution (GaAs)1−x(ZnSe)x with an ordered array of nanosize crystals on GaAs (100) substrates. Grown epitaxial films were investigated by the X-ray diffraction analysis method. The chemical composition of the grown epitaxial films was determined by a X-ray microanalyzer, along the thickness of the epitaxial layer. The photoluminescence spectrum was studied and a peak is observed at λmax = 465 nm, corresponding to the width of the band gap of zinc selenide EZnSe = 2.67 eV, which is apparently due to the nanocrystals ZnSe, disposed in the surface region of the epitaxial film of a solid solution (GaAs)1−x(ZnSe)x. Size of nanocrystals were evaluated by an atomic force microscopy. |
|---|---|
| ISSN: | 1687-8434 1687-8442 |