Design and Experimental Validation of Stem-Clamping-and-Pull-Out-Type Pepper Plug Seedling-Picking Mechanism

As a core component of a fully automatic pepper transplanter, the performance of the seedling-picking mechanism is of particular significance. However, existing seedling-picking mechanisms have problems such as being prone to damaging the seedling roots and substrate, as well as having poor stabilit...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenhua Lin, Xiao Li, Hao Sun, Maile Zhou, Jianjun Yin, Jijia He, Daqing Yin
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/14/1563
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a core component of a fully automatic pepper transplanter, the performance of the seedling-picking mechanism is of particular significance. However, existing seedling-picking mechanisms have problems such as being prone to damaging the seedling roots and substrate, as well as having poor stability. To develop a highly efficient, stable, and minimally damaging seedling-picking mechanism, this study proposed a design scheme for a stem-clamping-and-pulling-out-type seedling-picking end actuator driven by a non-circular gear system. The specific methods and objectives include the following: (1) designing a differential non-circular gear system to replicate a manual picking trajectory accurately; (2) establishing a kinematic model and developing optimization software to determine the optimal parameter combination; (3) experimentally validating the mechanism’s performance through virtual simulations and bench tests. The bench tests showed that the mechanism could complete two seedling-picking operations per rotation, extracting an entire row (eight plants) in a single rotation at a speed of 30 r/min. The measured angles of the end effector at four key postures were highly consistent with simulation and high-speed camera data, with all key posture errors less than 1°. These results demonstrate the mechanism’s high accuracy, efficiency, and reliability.
ISSN:2077-0472