Wavelet Domain Multidictionary Learning for Single Image Super-Resolution

Image super-resolution (SR) aims at recovering the high-frequency (HF) details of a high-resolution (HR) image according to the given low-resolution (LR) image and some priors about natural images. Learning the relationship of the LR image and its corresponding HF details to guide the reconstruction...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaomin Wu, Jiulun Fan, Jian Xu, Yanzi Wang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2015/526508
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Image super-resolution (SR) aims at recovering the high-frequency (HF) details of a high-resolution (HR) image according to the given low-resolution (LR) image and some priors about natural images. Learning the relationship of the LR image and its corresponding HF details to guide the reconstruction of the HR image is needed. In order to alleviate the uncertainty in HF detail prediction, the HR and LR images are usually decomposed into 4 subbands after 1-level discrete wavelet transformation (DWT), including an approximation subband and three detail subbands. From our observation, we found the approximation subbands of the HR image and the corresponding bicubic interpolated image are very similar but the respective detail subbands are different. Therefore, an algorithm to learn 4 coupled principal component analysis (PCA) dictionaries to describe the relationship between the approximation subband and the detail subbands is proposed in this paper. Comparisons with various state-of-the-art methods by experiments showed that our proposed algorithm is superior to some related works.
ISSN:2090-0147
2090-0155