Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption
Chitosan (CS) hydrogel beads and hybrid beads made of a blending of CS hydrogels and Multilayer Graphene Oxide (MGO) were synthesized. The hybrid beads were prepared by gelation in NaOH solution of a 1 wt% CS acid solution with addition of MGO at either 1.5 wt% or 3 wt% loading rates. Prepared beads...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2022-09-01
|
Series: | Comptes Rendus. Chimie |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.183/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206170937196544 |
---|---|
author | Bouyahmed, Farida Muller, Fabrice Richard, Annie Mostefaoui, Toufik Amayas Belabbas, Imad Warmont, Fabienne Roulet, Marjorie Reinert, Laurence Duclaux, Laurent Delpeux-Ouldriane, Sandrine |
author_facet | Bouyahmed, Farida Muller, Fabrice Richard, Annie Mostefaoui, Toufik Amayas Belabbas, Imad Warmont, Fabienne Roulet, Marjorie Reinert, Laurence Duclaux, Laurent Delpeux-Ouldriane, Sandrine |
author_sort | Bouyahmed, Farida |
collection | DOAJ |
description | Chitosan (CS) hydrogel beads and hybrid beads made of a blending of CS hydrogels and Multilayer Graphene Oxide (MGO) were synthesized. The hybrid beads were prepared by gelation in NaOH solution of a 1 wt% CS acid solution with addition of MGO at either 1.5 wt% or 3 wt% loading rates. Prepared beads were characterized by infrared spectroscopy, thermogravimetric analysis (TGA), scanning electron cryo-microscopy and Brunauer–Emmett–Teller (BET) specific surface area measurements. $\text{Zn}^{2+}$ and Metoprolol (MTP) adsorption kinetics and isotherms were studied on the pristine and hybrid CS hydrogel beads. The adsorption kinetics of $\text{Zn}^{2+}$ and MTP in hybrid beads is limited by the diffusion to the MGO sites depending on their accessibility. While pure CS is not efficient for the MTP adsorption, the Langmuir-type isotherms of the 3 wt% MGO hydrogel beads (dose: 5 mg/100 mL) show 163 mg$\cdot $g$^{-1}$ maximum adsorption uptake. The MTP adsorption kinetics and isotherm suggest a MTP trapping on the MGO anionic sites (carboxylate groups) by electrostatic interactions. The $\text{Zn}^{2+}$ adsorption capacities are the highest for the 3 wt% MGO hydrogel beads (236 mg$\cdot $g$^{-1}$), and only of 40 mg$\cdot $g$^{-1}$ for the pure CS beads. The presence of $\text{Zn}^{2+}$ adsorption sites in the hybrid bead, such as MGO carboxylate groups giving electrostatic interactions, and CS amine groups leading to complexation, provides synergic adsorption effects. The competitive adsorption of $\text{Zn}^{2+}$ with respect to MTP in equimolar mixture was observed on hybrid beads (dose: 200 mg/100 mL) at 2 mmol$\cdot $L$^{-1}$ initial total concentration. At pollutant initial total concentration lower than 1.5 mmol$\cdot $L$^{-1}$, no competition occurs. The regeneration at pH 4 of the hybrid beads toward MTP or $\text{Zn}^{2+}$ adsorption was found to be 35–40% of the initial adsorption uptake for five adsorption/regeneration cycles. |
format | Article |
id | doaj-art-9bfad61893bf4e699a448071ec8b4f2a |
institution | Kabale University |
issn | 1878-1543 |
language | English |
publishDate | 2022-09-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Chimie |
spelling | doaj-art-9bfad61893bf4e699a448071ec8b4f2a2025-02-07T13:31:13ZengAcadémie des sciencesComptes Rendus. Chimie1878-15432022-09-0125G120522310.5802/crchim.18310.5802/crchim.183Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorptionBouyahmed, Farida0https://orcid.org/0000-0002-3331-0203Muller, Fabrice1https://orcid.org/0000-0003-0887-651XRichard, Annie2Mostefaoui, Toufik Amayas3https://orcid.org/0000-0001-8149-9306Belabbas, Imad4https://orcid.org/0000-0001-9200-0339Warmont, Fabienne5https://orcid.org/0000-0002-5402-4003Roulet, Marjorie6https://orcid.org/0000-0003-1510-5537Reinert, Laurence7https://orcid.org/0000-0002-4417-9116Duclaux, Laurent8https://orcid.org/0000-0002-5532-1456Delpeux-Ouldriane, Sandrine9https://orcid.org/0000-0003-3899-9959CNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, France; Laboratoire de Physico-Chimie des Matériaux et Catalyse, Département de chimie, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, AlgérieCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, France; ISTO, Université d’Orléans, 45071 Orléans, FranceCME, Université d’Orléans, 45100 Orléans, FranceLaboratoire de Physico-Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, Algérie; Thunder Optics, 34060, Montpellier, FranceLaboratoire de Physico-Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, AlgérieCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, FranceCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, FranceUniversité Savoie Mont Blanc, EDYTEM, 73000 Chambéry, FranceUniversité Savoie Mont Blanc, EDYTEM, 73000 Chambéry, FranceCNRS-ICMN, Université d’Orléans, 45071 Orléans cedex 2, FranceChitosan (CS) hydrogel beads and hybrid beads made of a blending of CS hydrogels and Multilayer Graphene Oxide (MGO) were synthesized. The hybrid beads were prepared by gelation in NaOH solution of a 1 wt% CS acid solution with addition of MGO at either 1.5 wt% or 3 wt% loading rates. Prepared beads were characterized by infrared spectroscopy, thermogravimetric analysis (TGA), scanning electron cryo-microscopy and Brunauer–Emmett–Teller (BET) specific surface area measurements. $\text{Zn}^{2+}$ and Metoprolol (MTP) adsorption kinetics and isotherms were studied on the pristine and hybrid CS hydrogel beads. The adsorption kinetics of $\text{Zn}^{2+}$ and MTP in hybrid beads is limited by the diffusion to the MGO sites depending on their accessibility. While pure CS is not efficient for the MTP adsorption, the Langmuir-type isotherms of the 3 wt% MGO hydrogel beads (dose: 5 mg/100 mL) show 163 mg$\cdot $g$^{-1}$ maximum adsorption uptake. The MTP adsorption kinetics and isotherm suggest a MTP trapping on the MGO anionic sites (carboxylate groups) by electrostatic interactions. The $\text{Zn}^{2+}$ adsorption capacities are the highest for the 3 wt% MGO hydrogel beads (236 mg$\cdot $g$^{-1}$), and only of 40 mg$\cdot $g$^{-1}$ for the pure CS beads. The presence of $\text{Zn}^{2+}$ adsorption sites in the hybrid bead, such as MGO carboxylate groups giving electrostatic interactions, and CS amine groups leading to complexation, provides synergic adsorption effects. The competitive adsorption of $\text{Zn}^{2+}$ with respect to MTP in equimolar mixture was observed on hybrid beads (dose: 200 mg/100 mL) at 2 mmol$\cdot $L$^{-1}$ initial total concentration. At pollutant initial total concentration lower than 1.5 mmol$\cdot $L$^{-1}$, no competition occurs. The regeneration at pH 4 of the hybrid beads toward MTP or $\text{Zn}^{2+}$ adsorption was found to be 35–40% of the initial adsorption uptake for five adsorption/regeneration cycles.https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.183/ChitosanMultilayer graphene oxideWater treatment$\text{Zn}^{2+}$Metoprolol |
spellingShingle | Bouyahmed, Farida Muller, Fabrice Richard, Annie Mostefaoui, Toufik Amayas Belabbas, Imad Warmont, Fabienne Roulet, Marjorie Reinert, Laurence Duclaux, Laurent Delpeux-Ouldriane, Sandrine Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption Comptes Rendus. Chimie Chitosan Multilayer graphene oxide Water treatment $\text{Zn}^{2+}$ Metoprolol |
title | Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption |
title_full | Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption |
title_fullStr | Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption |
title_full_unstemmed | Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption |
title_short | Chitosan-multilayered graphene oxide hybrid beads for $\protect \text{Zn}^{2+}$ and metoprolol adsorption |
title_sort | chitosan multilayered graphene oxide hybrid beads for protect text zn 2 and metoprolol adsorption |
topic | Chitosan Multilayer graphene oxide Water treatment $\text{Zn}^{2+}$ Metoprolol |
url | https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.183/ |
work_keys_str_mv | AT bouyahmedfarida chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT mullerfabrice chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT richardannie chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT mostefaouitoufikamayas chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT belabbasimad chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT warmontfabienne chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT rouletmarjorie chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT reinertlaurence chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT duclauxlaurent chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption AT delpeuxouldrianesandrine chitosanmultilayeredgrapheneoxidehybridbeadsforprotecttextzn2andmetoprololadsorption |