Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods

Understanding the environmental factors that facilitate the occurrence and spread of infectious diseases in animals is crucial for risk prediction. As part of the H2020 Monitoring Outbreaks for Disease Surveillance in a Data Science Context (MOOD) project, scoping literature reviews have been conduc...

Full description

Saved in:
Bibliographic Details
Main Authors: Rémy Decoupes, Claudia Cataldo, Luca Busani, Mathieu Roche, Maguelonne Teisseire
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-06-01
Series:Frontiers in Artificial Intelligence
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frai.2025.1526820/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849723738639040512
author Rémy Decoupes
Rémy Decoupes
Claudia Cataldo
Luca Busani
Mathieu Roche
Mathieu Roche
Maguelonne Teisseire
Maguelonne Teisseire
author_facet Rémy Decoupes
Rémy Decoupes
Claudia Cataldo
Luca Busani
Mathieu Roche
Mathieu Roche
Maguelonne Teisseire
Maguelonne Teisseire
author_sort Rémy Decoupes
collection DOAJ
description Understanding the environmental factors that facilitate the occurrence and spread of infectious diseases in animals is crucial for risk prediction. As part of the H2020 Monitoring Outbreaks for Disease Surveillance in a Data Science Context (MOOD) project, scoping literature reviews have been conducted for various diseases. However, pathogens continuously mutate and generate variants with different sensitivities to these factors, necessitating regular updates to these reviews. In this paper, we propose to evaluate the potential benefits of artificial intelligence (AI) for updating such scoping reviews. We thus compare different combinations of AI methods for solving this task. These methods utilize generative large language models (LLMs) and lighter language models to automatically identify risk factors in scientific articles.
format Article
id doaj-art-9badd9110fd44ad781425080f9333d4e
institution DOAJ
issn 2624-8212
language English
publishDate 2025-06-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Artificial Intelligence
spelling doaj-art-9badd9110fd44ad781425080f9333d4e2025-08-20T03:10:56ZengFrontiers Media S.A.Frontiers in Artificial Intelligence2624-82122025-06-01810.3389/frai.2025.15268201526820Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methodsRémy Decoupes0Rémy Decoupes1Claudia Cataldo2Luca Busani3Mathieu Roche4Mathieu Roche5Maguelonne Teisseire6Maguelonne Teisseire7Territoires, environnement, télédétection et information spatiale (TETIS), Univ. Montpellier, AgroParisTech, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), CNRS, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Montpellier, FranceINRAE, Montpellier, FranceCenter for Gender-Specific Medicine, Istituto Superiore di Sanitá, Rome, ItalyCenter for Gender-Specific Medicine, Istituto Superiore di Sanitá, Rome, ItalyTerritoires, environnement, télédétection et information spatiale (TETIS), Univ. Montpellier, AgroParisTech, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), CNRS, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Montpellier, FranceCIRAD, Montpellier, FranceTerritoires, environnement, télédétection et information spatiale (TETIS), Univ. Montpellier, AgroParisTech, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), CNRS, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Montpellier, FranceINRAE, Montpellier, FranceUnderstanding the environmental factors that facilitate the occurrence and spread of infectious diseases in animals is crucial for risk prediction. As part of the H2020 Monitoring Outbreaks for Disease Surveillance in a Data Science Context (MOOD) project, scoping literature reviews have been conducted for various diseases. However, pathogens continuously mutate and generate variants with different sensitivities to these factors, necessitating regular updates to these reviews. In this paper, we propose to evaluate the potential benefits of artificial intelligence (AI) for updating such scoping reviews. We thus compare different combinations of AI methods for solving this task. These methods utilize generative large language models (LLMs) and lighter language models to automatically identify risk factors in scientific articles.https://www.frontiersin.org/articles/10.3389/frai.2025.1526820/fullscoping reviewnatural language processing (NPL)large language models (LLM)artificial intelligence (AI)infectious diseasescovariates analysis
spellingShingle Rémy Decoupes
Rémy Decoupes
Claudia Cataldo
Luca Busani
Mathieu Roche
Mathieu Roche
Maguelonne Teisseire
Maguelonne Teisseire
Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods
Frontiers in Artificial Intelligence
scoping review
natural language processing (NPL)
large language models (LLM)
artificial intelligence (AI)
infectious diseases
covariates analysis
title Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods
title_full Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods
title_fullStr Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods
title_full_unstemmed Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods
title_short Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods
title_sort automating updates for scoping reviews on the environmental drivers of human and animal diseases a comparative analysis of ai methods
topic scoping review
natural language processing (NPL)
large language models (LLM)
artificial intelligence (AI)
infectious diseases
covariates analysis
url https://www.frontiersin.org/articles/10.3389/frai.2025.1526820/full
work_keys_str_mv AT remydecoupes automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods
AT remydecoupes automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods
AT claudiacataldo automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods
AT lucabusani automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods
AT mathieuroche automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods
AT mathieuroche automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods
AT maguelonneteisseire automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods
AT maguelonneteisseire automatingupdatesforscopingreviewsontheenvironmentaldriversofhumanandanimaldiseasesacomparativeanalysisofaimethods