Measuring Electromagnetic Properties of Vegetal Soil for Wireless Underground Sensor Networks in Precision Agriculture
This research examines and analyzes the measured electromagnetic characteristics of vegetal soil for Wireless Underground Sensor Networks applied to precision agriculture. For this, we used Wireless Underground Sensor Network (WUSN) technology, which consists of sensors that communicate through the...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/14/24/11884 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This research examines and analyzes the measured electromagnetic characteristics of vegetal soil for Wireless Underground Sensor Networks applied to precision agriculture. For this, we used Wireless Underground Sensor Network (WUSN) technology, which consists of sensors that communicate through the soil to collect data on irrigation, such as temperature and humidity, for good plant growth. However, underground communication channels and signal transmission are required to travel through a dense and heterogeneous soil mixture. For the measurement results of the vegetal soil dielectric parameters, a precision domain sensing probe operating at 433 Mhz was used. Moreover, the different choices of capacitance, inductance, and varactor were included, with a reasonable estimation of the dielectric permittivity, ranging from 2 to 15, and an unlimited range of conductivities. Despite promising results in predicting the dielectric permittivities, several improvements were made to the mode for low permittivity values, and it was designed to accommodate a wide range of dielectric permittivities. |
|---|---|
| ISSN: | 2076-3417 |