Recent Advances in Suspended 2D Materials and Their Applications
Two-dimensional (2D) materials have attracted significant attention, owing to their atomically thin thickness; large specific surface area; and excellent mechanical, optical, and electronic properties. Suspended 2D materials, which eliminate substrate effects, exhibit unique potential in a variety o...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/15/12/929 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Two-dimensional (2D) materials have attracted significant attention, owing to their atomically thin thickness; large specific surface area; and excellent mechanical, optical, and electronic properties. Suspended 2D materials, which eliminate substrate effects, exhibit unique potential in a variety of applications, including ultrasensitive sensors, flexible electronic devices, acoustic devices, and optoelectronic devices. However, a central challenge in the fabrication of high-quality suspended structures lies in transfer technology—how to accurately transfer atomically thin layers onto target substrates or form self-suspended structures without introducing contamination or causing mechanical damage. This review summarizes recent advances in the fabrication, characterization, and applications of suspended 2D materials. We focus particularly on transfer methods, offering a comparative analysis of their advantages and limitations, and conclude with insights into future directions and remaining challenges. |
|---|---|
| ISSN: | 2079-4991 |