Effects of Different Biological Amendments on Rice Physiology, Yield, Quality, and Soil Microbial Community of Rice–Crab Co-Culture in Saline–Alkali Soil
The yield and quality of rice are influenced by soil conditions, and the soil issues in saline–alkaline land limit agricultural productivity. The saline–alkaline fields in the northern irrigation area of Yinchuan, Ningxia, China, face challenges such as low rice yield, poor quality, low fertilizer u...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Agronomy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4395/15/3/649 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The yield and quality of rice are influenced by soil conditions, and the soil issues in saline–alkaline land limit agricultural productivity. The saline–alkaline fields in the northern irrigation area of Yinchuan, Ningxia, China, face challenges such as low rice yield, poor quality, low fertilizer utilization efficiency, and soil salinity and alkalinity obstacles. To improve this situation, this study conducted experiments in 2022–2023 in the saline–alkaline rice–crab integrated fields of Tongbei Village, Tonggui Township, Yinchuan. This study employed a single-factor comparative design, applying 150 mL·hm<sup>−2</sup> of brassinolide (A1), 15 kg·hm<sup>−2</sup> of diatomaceous (A2), 30 kg·hm<sup>−2</sup> of <i>Bacillus subtilis</i> agent (A3), and an untreated control (CK) to analyze the effects of different biological amendments on rice growth, photosynthesis, yield, quality, and microbial communities. The results indicated that, compared with CK, the A3 increased the SPAD value and net photosynthetic rate by 2.26% and 28.59%, respectively. Rice yield increased by 12.34%, water use efficiency (WUE) by 10.67%, and the palatability score by 2.82%, while amylose content decreased by 8.00%. The bacterial OTUs (Operational Taxonomic Units) and fungal OTUs increased by 2.18% and 22.39%, respectively. Under the condition of applying 30 kg·hm<sup>−2</sup> of <i>Bacillus subtilis</i> agent (A3), rice showed superior growth, the highest yield (8804.4 kg·hm<sup>−2</sup>), and the highest microbial OTUs. These findings provide theoretical and technical support for utilizing biological remediation agents to achieve desalinization, yield enhancement, quality improvement, and efficiency in saline–alkali rice–crab co–culture paddies. |
|---|---|
| ISSN: | 2073-4395 |