Percolation of Carbon Nanoparticles in Poly(3-Hexylthiophene) Enhancing Carrier Mobility in Organic Thin Film Transistors

To improve the field-effect mobility of all-inkjet-printed organic thin film transistors (OTFTs), a composite material consisted of carbon nanoparticles (CNPs) and poly(3-hexylthiophene) (P3HT) was reported by using homemade inkjet-printing system. These all-inkjet-printed composite OTFTs represente...

Full description

Saved in:
Bibliographic Details
Main Authors: Chang-Hung Lee, Chun-Hao Hsu, Iu-Ren Chen, Wen-Jong Wu, Chih-Ting Lin
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2014/878064
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve the field-effect mobility of all-inkjet-printed organic thin film transistors (OTFTs), a composite material consisted of carbon nanoparticles (CNPs) and poly(3-hexylthiophene) (P3HT) was reported by using homemade inkjet-printing system. These all-inkjet-printed composite OTFTs represented superior characteristics compared to the all-inkjet-printed pristine P3HT OTFTs. To investigate the enhancement mechanism of the blended materials, the percolation model was established and experimentally verified to illustrate the enhancement of the electrical properties with different blending concentrations. In addition, experimental results of OTFT contact resistances showed that both contact resistance and channel resistance were halved. At the same time, X-ray diffraction measurements, Fourier transform infrared spectra, ultraviolet-visible light, and photoluminescence spectra were also accomplished to clarify the material blending effects. Therefore, this study demonstrates the potential and guideline of carbon-based nanocomposite materials in all-inkjet-printed organic electronics.
ISSN:1687-8434
1687-8442