HSDT-TabNet: A Dual-Path Deep Learning Model for Severity Grading of Soybean Frogeye Leaf Spot

Soybean frogeye leaf spot (FLS), a serious soybean disease, causes severe yield losses in the largest production regions of China. However, both conventional field monitoring and machine learning algorithms remain challenged in achieving rapid and accurate detection. In this study, an HSDT-TabNet mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoming Li, Yang Zhou, Yongguang Li, Shiqi Wang, Wenxue Bian, Hongmin Sun
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/15/7/1530
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soybean frogeye leaf spot (FLS), a serious soybean disease, causes severe yield losses in the largest production regions of China. However, both conventional field monitoring and machine learning algorithms remain challenged in achieving rapid and accurate detection. In this study, an HSDT-TabNet model was proposed for the grading of soybean FLS under field conditions by analyzing unmanned aerial vehicle (UAV)-based hyperspectral data. This model employs a dual-path parallel feature extraction strategy: the TabNet path performs sparse feature selection to capture fine-grained local discriminative information, while the hierarchical soft decision tree (HSDT) path models global nonlinear relationships across hyperspectral bands. The features from both paths are then dynamically fused via a multi-head attention mechanism to integrate complementary information. Furthermore, the overall generalization ability of the model is improved through hyperparameter optimization based on the tree-structured Parzen estimator (TPE). Experimental results show that HSDT-TabNet achieved a macro-accuracy of 96.37% under five-fold cross-validation. It outperformed the TabTransformer and SVM baselines by 2.08% and 2.23%, respectively. For high-severity cases (Level 4–5), the classification accuracy exceeded 97%. This study provides an effective method for precise field-scale crop disease monitoring.
ISSN:2073-4395